Gazeta matematică 2020: Difference between revisions

From Bitnami MediaWiki
 
(20 intermediate revisions by the same user not shown)
Line 1: Line 1:
== Gazeta matematică 1/2020 ==
''' [[E:15651]] (Mihai Pălincaș, elev)'''
''Determinați soluțiile raționale ale ecuației <math>x^{2020} - x^2 - 3x = 0</math>.''
'''[[27795]] (Adrian Boroica și Florin Bojor)'''
''Fie'' <math>n</math> ''un număr natural care nu este multiplu de <math>4</math> și <math>G</math> un grup necomutativ de ordin <math>n</math>. Să se demonstreze că există două automorfisme ale lui <math>G</math> care au aceleași puncte fixe.''
== Gazeta matematică 2/2020 ==
=== Supliment ===
'''[[S:E20.56]] (Cristina Vijdeluc, Mihai Vijdeluc)'''
''Se consideră triunghiul <math>ABC</math>, cu <math>AB=AC</math> și <math>\sphericalangle A = 36^\circ</math>. Punctul <math>D</math> aparține laturii <math>AC</math> astfel încât <math>BD</math> este bisectoarea unghiului <math>ABC</math>. Mediatorarea segmentului <math>AD</math> intersectează latura <math>AB</math> în <math>E</math>. Arătați că <math>DB</math> este bisectoare pentru unghiul <math>CDE</math>.''
== Gazeta matematică 3/2020 ==
== Gazeta matematică 3/2020 ==
'''[[15678|E:15678]]''' '''(Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare)'''


''Aflați toate numerele de forma'' <math>\overline{abcd}</math> ''pentru care''<math display="block">\overline{abcd} = 2021 + 5\left(a-c+b-d+1\right).</math>
'''Articol''' - Florin Bojor, Mircea Rus, Vasile Pop, ''Concursul interjudețean de matematică "ARGUMENT" - Ediția a XI-a, Baia Mare, 1-2 Noiembrie 2019  ''
 
'''[[15678|E:15678]] (Cristina Vijdeluc și Mihai Vijdeluc)'''
 
''Aflați toate numerele de forma'' <math>\overline{abcd}</math> ''pentru care'' <math>\overline{abcd} = 2021 + 5\left(a-c+b-d+1\right).</math>
 
'''[[E:15682]] (Cristina Vijdeliuc și Mihai Vijdeliuc)'''
 
''Determinați numerele naturale <math>x</math> și <math>y</math> pentru care <math>x\left(2x+1\right) = \frac{1010}{2y+1}</math>.''
 
'''[[15685|E:15685]] (Cristina Vijdeliuc și Mihai Vijdeliuc)'''
 
''Se consideră triunghiul dreptunghic <math> ABC </math>, cu <math> \angle A\ = 90^\circ </math> și <math> \angle B\ = 30^\circ </math>. Punctul <math>D</math> aparține laturii <math> BC </math> astfel încât <math> AD \perp BC </math>, punctul <math> M </math> este mijlocul segmentului <math> BC </math>, iar punctul <math> E </math> aparține laturii <math> AB </math> astfel încât <math> ME \perp AB </math>. Arătați că <math> DE \perp AM </math>.''


== Gazeta matematică 4/2020 ==
== Gazeta matematică 4/2020 ==
'''[[15698|E:15698]] (Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare)'''
''Determinați numerele naturale'' <math>a</math>'','' <math>b</math>'','' <math>c</math> ''pentru care''<math display="block">\left(2020 a \right)^2 + \left(2021 b\right)^2 = 2022 c^2</math>


'''[[E:15694]] (Traian Covaciu)'''
'''[[E:15694]] (Traian Covaciu)'''
Line 16: Line 42:


''Aflaţi numerele de forma ''<math>\overline{ab},</math>'' ştiind că ''<math>\overline{aaa} \cdot b + \overline{bb} = 2020.</math>
''Aflaţi numerele de forma ''<math>\overline{ab},</math>'' ştiind că ''<math>\overline{aaa} \cdot b + \overline{bb} = 2020.</math>
'''[[15698|E:15698]] (Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare)'''
''Determinați numerele naturale'' <math>a</math>'','' <math>b</math>'','' <math>c</math> ''pentru care''
<math>\left(2020 a \right)^2 + \left(2021 b\right)^2 = 2022 c^2</math>.


== Gazeta matematică 5/2020 ==
== Gazeta matematică 5/2020 ==
Line 22: Line 53:


''Se consideră mulțimea numerelor naturale de patru cifre, cifre care, într-o anumită ordine, sunt consecutive. Determinați probabilitatea ca, alegând la întâmplare un număr din această mulțime, acesta să fie divizibil cu 36.''
''Se consideră mulțimea numerelor naturale de patru cifre, cifre care, într-o anumită ordine, sunt consecutive. Determinați probabilitatea ca, alegând la întâmplare un număr din această mulțime, acesta să fie divizibil cu 36.''
== Gazeta matematică 6-7-8/2020 ==
'''Articol''' - Gheorghe Boroica, ''Partiții ale unor mulțimi finite de numere întregi''


== Gazeta matematică 9/2020 ==
== Gazeta matematică 9/2020 ==
'''Mușuroia, N.,''' Savu, I., ''Clase de șiruri pentru care termenul general nu se poate reprezenta sub formă rațională''   
'''Mușuroia, N.,''' Savu, I., ''Clase de șiruri pentru care termenul general nu se poate reprezenta sub formă rațională''   


'''E:15760''' '''(Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare)'''
'''[[E:15760]]''' '''(Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare)'''


''Aflați numerele naturale'' <math>\overline{abcd}</math> ''și'' <math>n</math> ''pentru care'' <math>\overline{abcd} + a+b+c+d= n!.</math>
''Aflați numerele naturale'' <math>\overline{abcd}</math> ''și'' <math>n</math> ''pentru care'' <math>\overline{abcd} + a+b+c+d= n!.</math>
Line 32: Line 67:
'''E:15761''' '''(Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare)'''
'''E:15761''' '''(Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare)'''


''Aflați numerele naturale'' <math>\overline{ab}</math> ''pentru care'' <math>3^a+4b=\overline{ab}.</math>'''E:15765''' '''(Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare)'''
''Aflați numerele naturale'' <math>\overline{ab}</math> ''pentru care'' <math>3^a+4b=\overline{ab}.</math>


''Determinați numerele prime'' <math>a < b < c < d</math> ''știind că''
'''E:15765''' '''(Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare)'''


<math display="block">79a + 90b +21c + 77d = 2020.</math>
''Determinați numerele prime'' <math>a < b < c < d</math> '' știind că '' <math>79a + 90b +21c + 77d = 2020.</math>


== Gazeta matematică 10/2020 ==
== Gazeta matematică 10/2020 ==
Line 42: Line 77:
'''[[E:15777]] (Anca Mihiș, Baia Mare)'''
'''[[E:15777]] (Anca Mihiș, Baia Mare)'''


''Arătaţi că numărul natural ''<math display="block">A = \left( 2^2 \cdot 2^4 \cdot 2^6 \cdot \ldots \cdot 2^{2020}\right): \left(2 \cdot 2^3 \cdot 2^5 \cdot \ldots \cdot 2^{2019} \right).</math>  
''Arătaţi că numărul natural ''<math>A = \left( 2^2 \cdot 2^4 \cdot 2^6 \cdot \ldots \cdot 2^{2020}\right): \left(2 \cdot 2^3 \cdot 2^5 \cdot \ldots \cdot 2^{2019} \right)</math> ''este pătratul unui număr natural.''
''este pătratul unui număr natural.''


== Gazeta matematică 11/2020 ==
== Gazeta matematică 11/2020 ==
Line 50: Line 84:


''Fie'' <math>z_1, z_2</math> ''respectiv'' <math>z_3</math>, ''afixele vârfurilor triunghiului'' <math>A_1A_2A_3</math>, ''înscris în cercul'' <math>C(0,1)</math>. ''Arătați că triunghiul'' <math>A_1A_2A_3</math> ''este echilateral dacă și numai dacă'' <math>(z_1+z_2)(z_2+z_3)(z_3+z_1) \not= 0</math> ''și'' <math>\frac{1}{z_1+z_2} + \frac{1}{z_2+z_3} + \frac{1}{z_3+z_1} = 0</math>.
''Fie'' <math>z_1, z_2</math> ''respectiv'' <math>z_3</math>, ''afixele vârfurilor triunghiului'' <math>A_1A_2A_3</math>, ''înscris în cercul'' <math>C(0,1)</math>. ''Arătați că triunghiul'' <math>A_1A_2A_3</math> ''este echilateral dacă și numai dacă'' <math>(z_1+z_2)(z_2+z_3)(z_3+z_1) \not= 0</math> ''și'' <math>\frac{1}{z_1+z_2} + \frac{1}{z_2+z_3} + \frac{1}{z_3+z_1} = 0</math>.
=== Supliment ===
'''[[S:E21.313]] (Cristina Vijdeluc & Mihai Vijdeluc)'''
''Rezolvați în mulțimea numerelor reale ecuația'' <math display="block">\frac{x-5}{1013} + \frac{x-7}{1014} + \frac{x-9}{1015} = \frac{x+2009}{6} + \frac{x+2005}{8} + \frac{x+2001}{10}.</math>
'''[[S:L21.287]] (Gheorghe Boroica)'''
''Arătați că, pentru orice număr natural'' <math>n \ge 3</math>, ''ecuația'' <math>x^2 + y^2 + z^2 =5^n</math> ''are soluții în mulțimea numerelor naturale nenule.''

Latest revision as of 16:49, 19 January 2025

Gazeta matematică 1/2020

E:15651 (Mihai Pălincaș, elev)

Determinați soluțiile raționale ale ecuației Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^{2020} - x^2 - 3x = 0} .

27795 (Adrian Boroica și Florin Bojor)

Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} un număr natural care nu este multiplu de Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G} un grup necomutativ de ordin Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} . Să se demonstreze că există două automorfisme ale lui Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G} care au aceleași puncte fixe.

Gazeta matematică 2/2020

Supliment

S:E20.56 (Cristina Vijdeluc, Mihai Vijdeluc)

Se consideră triunghiul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ABC} , cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AB=AC} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sphericalangle A = 36^\circ} . Punctul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D} aparține laturii Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AC} astfel încât Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle BD} este bisectoarea unghiului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ABC} . Mediatorarea segmentului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AD} intersectează latura Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AB} în Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E} . Arătați că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle DB} este bisectoare pentru unghiul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle CDE} .

Gazeta matematică 3/2020

Articol - Florin Bojor, Mircea Rus, Vasile Pop, Concursul interjudețean de matematică "ARGUMENT" - Ediția a XI-a, Baia Mare, 1-2 Noiembrie 2019

E:15678 (Cristina Vijdeluc și Mihai Vijdeluc)

Aflați toate numerele de forma Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{abcd}} pentru care Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{abcd} = 2021 + 5\left(a-c+b-d+1\right).}

E:15682 (Cristina Vijdeliuc și Mihai Vijdeliuc)

Determinați numerele naturale Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} pentru care Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\left(2x+1\right) = \frac{1010}{2y+1}} .

E:15685 (Cristina Vijdeliuc și Mihai Vijdeliuc)

Se consideră triunghiul dreptunghic Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ABC } , cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \angle A\ = 90^\circ } și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \angle B\ = 30^\circ } . Punctul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D} aparține laturii Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle BC } astfel încât Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AD \perp BC } , punctul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M } este mijlocul segmentului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle BC } , iar punctul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E } aparține laturii Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AB } astfel încât Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ME \perp AB } . Arătați că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle DE \perp AM } .

Gazeta matematică 4/2020

E:15694 (Traian Covaciu)

Suma a două numere naturale nenule este Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2020} . Dacă împărţim primul număr la al doilea, obţinem câtul egal cu restul. Aflaţi cele două numere.

E:15695 (Cristina Vijdeluc şi Mihai Vijdeluc)

Aflaţi numerele de forma Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{ab},} ştiind că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{aaa} \cdot b + \overline{bb} = 2020.}

E:15698 (Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare)

Determinați numerele naturale Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} pentru care Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(2020 a \right)^2 + \left(2021 b\right)^2 = 2022 c^2} .

Gazeta matematică 5/2020

E:15714 (Traian Covaciu)

Se consideră mulțimea numerelor naturale de patru cifre, cifre care, într-o anumită ordine, sunt consecutive. Determinați probabilitatea ca, alegând la întâmplare un număr din această mulțime, acesta să fie divizibil cu 36.

Gazeta matematică 6-7-8/2020

Articol - Gheorghe Boroica, Partiții ale unor mulțimi finite de numere întregi

Gazeta matematică 9/2020

Mușuroia, N., Savu, I., Clase de șiruri pentru care termenul general nu se poate reprezenta sub formă rațională

E:15760 (Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare)

Aflați numerele naturale Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{abcd}} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} pentru care Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{abcd} + a+b+c+d= n!.}

E:15761 (Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare)

Aflați numerele naturale Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{ab}} pentru care Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3^a+4b=\overline{ab}.}

E:15765 (Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare)

Determinați numerele prime Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a < b < c < d} știind că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 79a + 90b +21c + 77d = 2020.}

Gazeta matematică 10/2020

E:15777 (Anca Mihiș, Baia Mare)

Arătaţi că numărul natural Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A = \left( 2^2 \cdot 2^4 \cdot 2^6 \cdot \ldots \cdot 2^{2020}\right): \left(2 \cdot 2^3 \cdot 2^5 \cdot \ldots \cdot 2^{2019} \right)} este pătratul unui număr natural.

Gazeta matematică 11/2020

27930 (Nicolae Mușuroia)

Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z_1, z_2} respectiv Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z_3} , afixele vârfurilor triunghiului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_1A_2A_3} , înscris în cercul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C(0,1)} . Arătați că triunghiul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_1A_2A_3} este echilateral dacă și numai dacă Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (z_1+z_2)(z_2+z_3)(z_3+z_1) \not= 0} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{z_1+z_2} + \frac{1}{z_2+z_3} + \frac{1}{z_3+z_1} = 0} .

Supliment

S:E21.313 (Cristina Vijdeluc & Mihai Vijdeluc)

Rezolvați în mulțimea numerelor reale ecuația Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{x-5}{1013} + \frac{x-7}{1014} + \frac{x-9}{1015} = \frac{x+2009}{6} + \frac{x+2005}{8} + \frac{x+2001}{10}.}

S:L21.287 (Gheorghe Boroica)

Arătați că, pentru orice număr natural Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \ge 3} , ecuația Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2 + y^2 + z^2 =5^n} are soluții în mulțimea numerelor naturale nenule.