Gazeta matematică 2015
Gazeta Matematică 1/2015
27020 (Gheorghe Szöllösy)
Să se calculeze suma
27022 (Guntter Gotha)
Fie o funcție cu proprietatea lui Darboux și cu . Mulțimea este finită și are un număr impar de elemente. Demonstrați că are un punct de extrem local ce aparține mulțimii .
27024 (Gheorghe Szöllösy)
Fie Să se calculeze
Gazeta Matematică 2/2015
27036 (Radu Pop)
Să se determine funcțiile derivabile cu proprietățile:
a) este funcție strict crescătoare;
b)
c) , oricare ar fi .
Gazeta Matematică 3/2015
Gazeta Matematică 9/2015
E:14892 (Radu Pop & Ienuțaș Vasile)
Fie triunghiul cu și punctele , , , . Punctul este situat în interiorul triunghiului astfel încât și , punctul astfel încât cu , iar și astfel încât și .
- Arătați că
- Determinați măsura unghiului
- Arătați că
Supliment pentru Gazeta Matematică 9/2015
S:E15.208 (Angela Lopată)
Determinați toate numerele naturale consecutive care au suma .
S:E15.239 (Andrei Horvat-Marc)
Într-un triunghi dreptunghic se notează cu și lungimile catetelor, cu lungimea ipotenuzei, cu și lungimile proiecțiilor catetelor pe ipotenuză, iar cu lungimea înălțimii corespunzătoare ipotenuzei.
a) Pentru cm și cm, calculați , , și .
b) Arătați că există o infinitate de triunghiuri dreptunghice pentru care toate valorile , , , , și sunt numere naturale.
S:L15.228 (Iulian Bunu)
Fie șirul de numere reale , cu , , și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{n+1} = a_1+a_2+\ldots + a_{n-1} - a_n } pentru orice Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n>3} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(b_n \right)_{n\ge 1}} , cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b_n = \sum\limits_{k=1}^n a_k} . Calculați Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim\limits_{n\to \infty} \dfrac{b_{2n}}{b_{2n+1}}}
S:L15.231 (Andrei Horvat-Marc)
Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(a_n\right)_{n\ge 1}} un șir crescător de numere reale strict pozitive cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim\limits_{n\to \infty} a_n = a} . Arătați că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim\limits_{n\to\infty} \dfrac{a-a_n}{\ln\frac{a}{a_n}} = a}
S:L15.236 (Gabriela Boroica)
Dacă funcțiile Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f,g : \mathbb{R} \to \mathbb{R}} admit primitive, atunci funcția Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u=\max\left\{ f,g \right\} - \left| f\right|} are primitive pe Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbb{R}} ?