27024
27024 (Gheorghe Szöllösy)
Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_n = \int_{0}^{\pi} \frac{\cos nx}{13-12\cos x}\,dx, n\ge0.} Să se calculeze Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \to \infty}(I_0+I_1+I_2+\ldots+I_n).}
Soluție. Să observăm că
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_{n+2}+I_n = \int_{0}^{\pi}\frac{2\cos x-\cos(n_1)x}{13-12\cos x}\,dx = \frac{1}{6}\int_{0}^{\pi}\frac{(12\cos x-13+13)\cos(n+1)x}{13-12\cos x}\,dx=}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{1}{6(n+1)}\sin(n+1)x\Biggr|_{0}^{\pi}+\frac{13}{6}I_{n+1},}
oricare ar fi Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\in \mathbb{N}.} Atunci Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_n=\alpha\left(\frac{2}{3}\right)^n+\beta\left(\frac{3}{2}\right)^n} , unde Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha+\beta=I_0=\frac{\pi}{5}} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{3}\alpha+\frac{3}{2}\beta=I_1=\frac{2\pi}{15}.}
Obținem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha=\frac{\pi}{5}, \beta=0} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle I_n=\frac{\pi}{5}\left(\frac{2}{3}\right)^n} pentru orice Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n>0} .
În consecință, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \to \infty}(I_0+I_1+I_2+\ldots+I_n)= \frac{\frac{\pi}{5}}{1-\frac{2}{3}}=\frac{3\pi}{5}.}