Gazeta matematică 2020: Difference between revisions

From Bitnami MediaWiki
mNo edit summary
Line 34: Line 34:


''Se consideră mulțimea numerelor naturale de patru cifre, cifre care, într-o anumită ordine, sunt consecutive. Determinați probabilitatea ca, alegând la întâmplare un număr din această mulțime, acesta să fie divizibil cu 36.''
''Se consideră mulțimea numerelor naturale de patru cifre, cifre care, într-o anumită ordine, sunt consecutive. Determinați probabilitatea ca, alegând la întâmplare un număr din această mulțime, acesta să fie divizibil cu 36.''
== Gazeta matematică 6-7-8/2020 ==
'''Articol''' - Gheorghe Boroica,


== Gazeta matematică 9/2020 ==
== Gazeta matematică 9/2020 ==

Revision as of 18:09, 5 January 2025

Gazeta matematică 1/2020

27795 (Adrian Boroica și Florin Bojor)

Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} un număr natural care nu este multiplu de Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G} un grup necomutativ de ordin Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} . Să se demonstreze că există două automorfisme ale lui Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G} care au aceleași puncte fixe.

Gazeta matematică 3/2020

E:15678 (Cristina Vijdeluc și Mihai Vijdeluc)

Aflați toate numerele de forma Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{abcd}} pentru careFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{abcd} = 2021 + 5\left(a-c+b-d+1\right).}

E:15685 (Cristina Vijdeliuc și Mihai Vijdeliuc)

Se consideră triunghiul dreptunghic Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ABC } , cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \angle A\ = 90^\circ } și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \angle B\ = 30^\circ } . Punctul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D} aparține laturii Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle BC } astfel încât Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AD \perp BC } , punctul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M } este mijlocul segmentului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle BC } , iar punctul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E } aparține laturii Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AB } astfel încât Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ME \perp AB } . Arătați că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle DE \perp AM } .

Gazeta matematică 4/2020

E:15694 (Traian Covaciu)

Suma a două numere naturale nenule este Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2020} . Dacă împărţim primul număr la al doilea, obţinem câtul egal cu restul. Aflaţi cele două numere.

E:15695 (Cristina Vijdeluc şi Mihai Vijdeluc)

Aflaţi numerele de forma Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{ab},} ştiind că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{aaa} \cdot b + \overline{bb} = 2020.}

E:15698 (Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare)

Determinați numerele naturale Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} , , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c} pentru care Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left(2020 a \right)^2 + \left(2021 b\right)^2 = 2022 c^2} .

Gazeta matematică 5/2020

E:15714 (Traian Covaciu)

Se consideră mulțimea numerelor naturale de patru cifre, cifre care, într-o anumită ordine, sunt consecutive. Determinați probabilitatea ca, alegând la întâmplare un număr din această mulțime, acesta să fie divizibil cu 36.

Gazeta matematică 6-7-8/2020

Articol - Gheorghe Boroica,

Gazeta matematică 9/2020

Mușuroia, N., Savu, I., Clase de șiruri pentru care termenul general nu se poate reprezenta sub formă rațională

E:15760 (Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare)

Aflați numerele naturale Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{abcd}} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} pentru care Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{abcd} + a+b+c+d= n!.}

E:15761 (Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare)

Aflați numerele naturale Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{ab}} pentru care Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3^a+4b=\overline{ab}.}

E:15765 (Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare)

Determinați numerele prime Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a < b < c < d} știind că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 79a + 90b +21c + 77d = 2020.}

Gazeta matematică 10/2020

E:15777 (Anca Mihiș, Baia Mare)

Arătaţi că numărul natural Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A = \left( 2^2 \cdot 2^4 \cdot 2^6 \cdot \ldots \cdot 2^{2020}\right): \left(2 \cdot 2^3 \cdot 2^5 \cdot \ldots \cdot 2^{2019} \right).} este pătratul unui număr natural.

Gazeta matematică 11/2020

27930 (Nicolae Mușuroia)

Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z_1, z_2} respectiv Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z_3} , afixele vârfurilor triunghiului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_1A_2A_3} , înscris în cercul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C(0,1)} . Arătați că triunghiul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_1A_2A_3} este echilateral dacă și numai dacă Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (z_1+z_2)(z_2+z_3)(z_3+z_1) \not= 0} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{z_1+z_2} + \frac{1}{z_2+z_3} + \frac{1}{z_3+z_1} = 0} .

Supliment

S:E21.313 (Cristina Vijdeluc & Mihai Vijdeluc)

Rezolvați în mulțimea numerelor reale ecuația Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{x-5}{1013} + \frac{x-7}{1014} + \frac{x-9}{1015} = \frac{x+2009}{6} + \frac{x+2005}{8} + \frac{x+2001}{10}.}

S:L21.287 (Gheorghe Boroica)

Arătați că, pentru orice număr natural Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \ge 3} , ecuația Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x^2 + y^2 + z^2 =5^n} are soluții în mulțimea numerelor naturale nenule.