Gazeta matematică 2022: Difference between revisions
(One intermediate revision by the same user not shown) | |||
Line 89: | Line 89: | ||
'''[[E:16382]] (Cristina Vijdeluc și Mihai Vijdeluc)''' | '''[[E:16382]] (Cristina Vijdeluc și Mihai Vijdeluc)''' | ||
''Afișați numerele întregi pozitive <math>\overline{abcd}</math> cu proprietatea''<math>a^7 + a^b + a^c + a^d = \overline{a000}.</math> | ''Afișați numerele întregi pozitive <math>\overline{abcd}</math> cu proprietatea ''<math>a^7 + a^b + a^c + a^d = \overline{a000}.</math> | ||
==== Clasa a XI-a ==== | ==== Clasa a XI-a ==== | ||
Line 96: | Line 96: | ||
'' Fie șirul '' <math> (a_n)_{n \geq 1} </math> '' cu termenii strict pozitivi, dat de relația'' <math> a_{n+1}=\ln(a_1 + a_2 + ... + a_n), n \geq 1. </math>'' Determinați ''<math>\lim_{{n \to \infty}} \left(\frac{a_{n+1}}{a_n}-1\right) \cdot e^{a_n}. </math> | '' Fie șirul '' <math> (a_n)_{n \geq 1} </math> '' cu termenii strict pozitivi, dat de relația'' <math> a_{n+1}=\ln(a_1 + a_2 + ... + a_n), n \geq 1. </math>'' Determinați ''<math>\lim_{{n \to \infty}} \left(\frac{a_{n+1}}{a_n}-1\right) \cdot e^{a_n}. </math> | ||
== Gazeta Matematică 11/2022 == | |||
==== Clasa a V-a ==== | |||
'''[[E:16407]] (Cristina Vijdeluc și Mihai Vijdeluc)''' | |||
''Aflați cifrele nenule <math>a </math> și <math>b</math> pentru care <math>a + 10 \cdot (a + b)^{3} = \overline{baba}.</math>'' | |||
==== Clasa a IX-a ==== | |||
'''[[28450]] (Nicolae Mușuroia)''' | |||
''Fie <math>n \in </math> ℕ, <math>n \geq 4</math> și <math>p \in \{1, 2,..., [n/2]\}.</math> Considerăm mulțimile disjuncte <math>A = \{ a_{1}, a_{2},..., a_{n} \}</math> și <math>B = \{ b_{1}, b_{2},..., b_{n} \}</math>, formate din primii <math>n</math> termeni a două progresii aritmetice <math>(a_{k})_{k\geq1}</math> și <math>(b_{k})_{k\geq1}</math> cu rații opuse, nenule. Arătați că printre orice <math>n + p + 1</math> elemente distincte ale mulțimii <math>A \cup B</math> există două a căror sumă este egală cu <math>a_{2p} + b_p.</math>'' |
Latest revision as of 15:25, 1 November 2024
Gazeta Matematică 1/2022[edit | edit source]
Clasa a XI-a[edit | edit source]
28247 (Florin Bojor)
Fie matricele care verifică simultan condițiile:
- matricea este nilpotentă și matricea este inversabilă.
Arătați că ecuația nu are soluții în .
Clasa a XII-a[edit | edit source]
28250 (Codruț-Sorin Zmicală)
Calculați
28251 (Gheorghe Boroica)
Fie un număr natural și o funcție continuă astfel încât și .
a) Dați un exemplu de o funcție cu proprietățile din enunț.
b) Arătați că există astfel încât .
Gazeta Matematică 2/2022[edit | edit source]
Clasa a VII-a[edit | edit source]
E:16203 (Dana Heuberger)
Fie triunghiul dreptunghic în , cu . Se consideră punctul astfel încât semidreapta este bisectoarea și . Fie punctul astfel încât se află pe segmentul și . Notăm cu simetricul lui față de . Arătați că
a)
b)
Clasa a IX-a[edit | edit source]
28260 (Dana Heuberger)
Fie triunghiul echilateral înscris în cercul de centru și rază . Considerăm mulțimea a punctelor din plan cu proprietatea că , unde . Arătați că oricare ar fi punctele distincte există astfel încât vectorii , și să formeze un triunghi echilateral.
Clasa a X-a[edit | edit source]
S:L22.58 (Vasile Giurgi)
Determinați pentru care ecuația
Gazeta Matematică 3/2022[edit | edit source]
S:L22.108. (Nicolae Mușuroia)
Fie cu , neinversabilă și , unde . Arătați că
Gazeta Matematică 4/2022[edit | edit source]
Clasa a X-a[edit | edit source]
28315 (Vasile Pop și Nicolae Mușuroia)
Fie un poligon regulat și un punct în interiorul poligonului. Notăm cu , simetricele punctului față de laturile poligonului. Arătați că, pentru orice alegere a punctului , poligoanele au același centru de greutate.
Gazeta Matematică 5/2022[edit | edit source]
Clasa a X-a[edit | edit source]
28338 (Nicolae Muşuroia)
Fie un punct în planul triunghiului iar simetricele punctului față de mijloacele laturilor respectiv .
a) Arătați că dreptele sunt concurente într-un punct .
b) Arătați că punctele sunt coliniare și că unde este centrul de greutate al triunghiului .
Gazeta Matematică 6-7-8/2022[edit | edit source]
Clasa a IX-a[edit | edit source]
28354 (Florin Bojor)
Fie punctul de intersecție a diagonalelor patrulaterului convex și punctele , , și situate pe segmentele , , , respectiv , astfel încât . Notăm cu , , și mijloacele segmentelor , , , respectiv și cu , , și mijloacele segmentelor , , , respectiv . Arătați că:
- punctele , și sunt coliniare dacă și numai dacă .
- , punctele de intersecție ale dreptelor , , și sunt vârfurile unui dreptunghi.
Gazeta Matematică 10/2022[edit | edit source]
Clasa a V-a[edit | edit source]
E:16379 (Cristina Vijdeluc, Salonic şi Mihai Vijdeluc, Baia Mare)
Aflaţi numărul natural , cu cifre distincte, pentru care
E:16380 (Cristina Vijdeluc, Salonic şi Mihai Vijdeluc, Baia Mare)
Aflaţi numerele naturale pentru care are loc relaţia
E:16382 (Cristina Vijdeluc și Mihai Vijdeluc)
Afișați numerele întregi pozitive cu proprietatea
Clasa a XI-a[edit | edit source]
28437 (Nicolae Mușuroaia)
Fie șirul cu termenii strict pozitivi, dat de relația Determinați
Gazeta Matematică 11/2022[edit | edit source]
Clasa a V-a[edit | edit source]
E:16407 (Cristina Vijdeluc și Mihai Vijdeluc)
Aflați cifrele nenule și pentru care
Clasa a IX-a[edit | edit source]
28450 (Nicolae Mușuroia)
Fie ℕ, și Considerăm mulțimile disjuncte și , formate din primii termeni a două progresii aritmetice și cu rații opuse, nenule. Arătați că printre orice elemente distincte ale mulțimii există două a căror sumă este egală cu