Gazeta matematică 2024: Difference between revisions

From Bitnami MediaWiki
 
(10 intermediate revisions by the same user not shown)
Line 33: Line 33:


''De ziua ei, Miruna are cinci invitați pentru care a pregătit un coșuleț în care a pus de trei ori mai multe bomboane decât acadele. Fiecare invitat a luat din coșuleț câte o bomboană și câte o acadea. Astfel, în coșuleț au rămas de patru ori mai puține acadele decât bomboane. Aflați câte bomboane și câte acadele au fost la început în coșulețul pregătit de Miruna.''
''De ziua ei, Miruna are cinci invitați pentru care a pregătit un coșuleț în care a pus de trei ori mai multe bomboane decât acadele. Fiecare invitat a luat din coșuleț câte o bomboană și câte o acadea. Astfel, în coșuleț au rămas de patru ori mai puține acadele decât bomboane. Aflați câte bomboane și câte acadele au fost la început în coșulețul pregătit de Miruna.''
'''[[P:1799]] (Nicolae Mușuroia)'''
''La un test Ana rezolvă <math>5</math> probleme și <math>3</math> exerciții și obține <math>75</math> de puncte. La același test, Dan a obținut <math>75</math> de puncte pentru rezolvarea a <math>4</math> probleme și <math>5</math> exerciții. Se știe că punctajul maxim care poate fi obținut este <math>100</math> de puncte, dintre care <math>10</math> puncte sunt acordate din oficiu. Aflați câte puncte valorează o problemă și câte puncte valorează un exercițiu.''
'''[[P:1800]] (Ioan Ovidiu Pop, Coroieni)'''
''Aflați numărul de telefon <math>\overline{07abcdefgh}</math>, format din zece cifre, nu neapărat distincte, pentru care numerele <math>a+c</math>, <math>b+c</math>, <math>d+e</math>, <math>c+d</math>, <math>a+b+e</math>, <math>c+d+f</math>, <math>b+c+g</math> și <math>d+e+h</math> sunt opt numere consecutive așezate în ordine crescătoare.''
=== Clasa a V-a ===
'''[[E:16887]] (Gheorghe Boroica)'''
''Suma a <math>90</math> de numere naturale este <math>2069</math>. Arătați că există, printre acestea, cel puțin trei numere egale.''
'''[[E:16888]] (Gheorghe Boroica)'''
''Considerăm <math>n</math> un număr natural nenul. Demonstrați că numărul <math>N = \underbrace{44\ldots4}_{n \text{ cifre}}\underbrace{22\ldots2}_{n \text{ cifre}} </math>  poate fi scris ca produsul a două numere naturale consecutive.''
'''[[E:16889]] (Călin Hossu)'''
''Prin împărțirea unui număr de patru cifre la răsturnatul său, se obține câtul <math>2</math> și restul <math>1977</math>. Aflați numărul, știind că diferența dintre cifra miilor și cifra unităților este <math>5</math>, iar cifra sutelor este cu <math>4</math> mai mare decât cifra zecilor.''
'''[[E:16890]] (Bogdan Zetea, Călin Hossu)'''
''Demonstrați că, pentru orice număr natural nenul <math>n</math>, numărul <math>2024^n+n^{2024} + 2</math> nu este un pătrat perfect.''
'''[[E:16891]] (Sever Pop)'''
''Determinați numerele prime <math>p</math>, <math>q</math>, <math>r</math>, distincte două câte două, pentru care are loc egalitatea <math>3p^4 - 5q^4 - 4r^2 = 26</math>.''
'''[[E:16892]] (Nicolae Mușuroia)'''
''Aflați suma divizorilor pari ai celui mai mare număr natural <math>a</math>, cu <math>a<1000</math>, pentru  care suma divizorilor impari este egală cu <math>24</math>.''
'''[[E:16893]] (Traian Covaciu)'''
''Arătați că numerele <math>7n-1</math> și <math>17n-1</math> sunt simultan prime doar dacă <math>n</math> este un multiplu natural al lui <math>6</math>.''


=== Clasa a VI-a ===
=== Clasa a VI-a ===

Latest revision as of 13:32, 20 September 2025

Gazeta Matematică 5/2024

Ciclul primar

P:1791 (Vraja-Lőkös Éva-Ibolya)

Suma a două numere naturale, pare, consecutive este . Aflați produsul acestor numere.

P:1792 (Monica Dragoș)

Determinați numărul natural pentru care .

P:1793 (Ioana Roman)

Determinați cel mai mic număr de forma pentru care are loc egalitatea .

P:1794 (Florin Bojor)

Suma a trei numere este . Aflați cele trei numere, știind că jumătatea primului număr, treimea celui de-al doilea și pătrimea celui de-al treilea număr sunt trei numere consecutive în ordine crescătoare.

P:1795 (Gheorghe Boroica)

Numărul se scrie ca și produsul a numere naturale. Determinați suma minimă a tuturor factorilor acestui produs.

P:1796 (Mariana Pop)

Un grup de elevi pornește în drumeție din orașul Târgu Lăpuș și ajunge după cinci ore pe Vârful Țibleș. Distanța de de kilometri a fost parcursă de grupul de elevi cu bicicletele, mergând cu o viteză de km/h, iar pe jos cu o viteză de km/h. Aflați câți kilometri au fost parcurși cu bicicletele și câți kilometri au fost parcurși pe jos.

P:1797 (Simona Cosma)

Pentru cei de elevi ai unei clase se confecționează ținuta școlară, constând din sarafan pentru fete și veste pentru băieți. Pentru sarafane și veste sunt necesari m de stofă, iar pentru sarafane și veste sunt necesari m de stofă. Aflați câți metri de stofă sunt necesari pentru confecționarea ținutei școlare pentru toți elevii clasei, știind că numărul fetelor este cu mai mare decât cel al băieților.

P:1798 (Andreea Budea)

De ziua ei, Miruna are cinci invitați pentru care a pregătit un coșuleț în care a pus de trei ori mai multe bomboane decât acadele. Fiecare invitat a luat din coșuleț câte o bomboană și câte o acadea. Astfel, în coșuleț au rămas de patru ori mai puține acadele decât bomboane. Aflați câte bomboane și câte acadele au fost la început în coșulețul pregătit de Miruna.

P:1799 (Nicolae Mușuroia)

La un test Ana rezolvă probleme și exerciții și obține de puncte. La același test, Dan a obținut de puncte pentru rezolvarea a probleme și exerciții. Se știe că punctajul maxim care poate fi obținut este de puncte, dintre care puncte sunt acordate din oficiu. Aflați câte puncte valorează o problemă și câte puncte valorează un exercițiu.

P:1800 (Ioan Ovidiu Pop, Coroieni)

Aflați numărul de telefon , format din zece cifre, nu neapărat distincte, pentru care numerele , , , , , , și sunt opt numere consecutive așezate în ordine crescătoare.

Clasa a V-a

E:16887 (Gheorghe Boroica)

Suma a de numere naturale este . Arătați că există, printre acestea, cel puțin trei numere egale.

E:16888 (Gheorghe Boroica)

Considerăm un număr natural nenul. Demonstrați că numărul poate fi scris ca produsul a două numere naturale consecutive.

E:16889 (Călin Hossu)

Prin împărțirea unui număr de patru cifre la răsturnatul său, se obține câtul și restul . Aflați numărul, știind că diferența dintre cifra miilor și cifra unităților este , iar cifra sutelor este cu mai mare decât cifra zecilor.

E:16890 (Bogdan Zetea, Călin Hossu)

Demonstrați că, pentru orice număr natural nenul , numărul nu este un pătrat perfect.

E:16891 (Sever Pop)

Determinați numerele prime , , , distincte două câte două, pentru care are loc egalitatea .

E:16892 (Nicolae Mușuroia)

Aflați suma divizorilor pari ai celui mai mare număr natural , cu , pentru care suma divizorilor impari este egală cu .

E:16893 (Traian Covaciu)

Arătați că numerele și sunt simultan prime doar dacă este un multiplu natural al lui .

Clasa a VI-a

E:16899 (Angela Lopată)

Fie un triunghi pentru care lungimea proiecţiei laturii pe dreapta este mai mare decât lungimea segmentului . Considerăm punctele , pe laturile , respectiv astfel încât . Fie punctul astfel încât , punctele și sunt de aceeași parte a dreptei , iar distanţa de la punctul la dreapta este aceeași cu distanţa de la punctul la dreapta . Arătaţi că .

Clasa a VII-a

E:16901 (Călin Hossu)

Determinați numărul natural pentru care are loc egalitatea .

E:16902 (Melania-Iulia Dobrican)

Fie numerele reale pozitive , , cu . Arătaţi că

Clasa a VIII-a

E:16910 (Teodora Zetea & Bogdan Zetea)

Aflați soluțiile întregi ale ecuației

Clasa a X-a

28867 (Natalia Fărcaș)

Fie funcția injectivă , cu proprietatea că există numerele reale și astfel încât oricare ar fi .

  1. Demonstrați că .
  2. Dați un exemplu de șir de funcții injective , cu proprietatea că există , astfel încât pentru orice , avem
    și

28868 (Andrei Horvat-Marc)

Fie și funcțiile , și , .

Fie punctele , și mulțimea a punctelor din plan cuprinse între graficele funcțiilor și și dreapta . Aflați numărul punctelor din care au ambele coordonate întregi.