Gazeta matematică 2015: Difference between revisions
Created page with "== Gazeta Matematică 1/2015 == == Gazeta Matematică 2/2015 == == Gazeta Matematică 3/2015 == == Gazeta Matematică 9/2015 ==" |
|||
(6 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
== Gazeta Matematică 1/2015 == | == Gazeta Matematică 1/2015 == | ||
'''[[27020]] (Gheorghe Szöllösy)''' | |||
''Să se calculeze suma'' <math> \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{1}{4^k \cdot (k!)^2 (n-2k)!}, \quad n \geq 1. | |||
</math>'' | |||
'''[[27022]] (Guntter Gotha)''' | |||
''Fie <math>f:\left[a,b\right] \to \mathbb{R}</math> o funcție cu proprietatea lui Darboux și cu <math>f\left(a\right) \cdot f\left( b \right) >0</math>. Mulțimea <math>M = \left\{ x \in \left[ a, b \right] \, | \, f\left(x\right) =0 \right\}</math> este finită și are un număr impar de elemente. Demonstrați că <math>f</math> are un punct de extrem local ce aparține mulțimii <math>M</math>.'' | |||
'''[[27024]] (Gheorghe Szöllösy)''' | |||
''Fie '' <math> I_n = \int_{0}^{\pi} \frac{\cos nx}{13-12\cos x}\,dx, n\ge0.</math>'' Să se calculeze '' <math>\lim_{n \to \infty}(I_0+I_1+I_2+\ldots+I_n).</math> | |||
== Gazeta Matematică 2/2015 == | == Gazeta Matematică 2/2015 == | ||
'''[[27036]] (Radu Pop)''' | |||
''Să se determine funcțiile derivabile <math>f : \mathbb{R} \to \mathbb{R} | |||
</math>'' ''cu proprietățile:'' | |||
''a) <math>f' | |||
</math> este funcție strict crescătoare;'' | |||
''b) <math>f'(0) = 0; | |||
</math>'' | |||
''c) <math>f(yf'(x)) + f(x)f(y) = xy f'(x)f'(y) | |||
</math> , oricare ar fi'' <math>x,y \in \mathbb{R} | |||
</math>. | |||
== Gazeta Matematică 3/2015 == | == Gazeta Matematică 3/2015 == | ||
== Gazeta Matematică 9/2015 == | == Gazeta Matematică 9/2015 == | ||
'''[[E:14892]] (Radu Pop & Ienuțaș Vasile)''' | |||
''Fie triunghiul'' <math>ABC</math> ''cu'' <math>m\left(\sphericalangle C\right) > 30^\circ</math> ''și punctele'' <math>M</math>, <math>P</math>, <math>R</math>, <math>T</math>. ''Punctul'' <math>M</math> ''este situat în interiorul triunghiului'' <math>ABC</math> ''astfel încât'' <math>m\left(\sphericalangle BMA\right) = 120^\circ</math> ''și <math>m\left(\sphericalangle BCM\right) = 30^\circ</math>, punctul <math>P\in \left(MD\right.</math> astfel încât <math>\left[MP\right] \equiv \left[MB\right]</math> cu <math>AM \cap BC = \left\{D\right\}</math>, iar <math>R\in \left(AB\right)</math> și <math>T \in \left(AC\right)</math> astfel încât <math>m\left(\sphericalangle RBM\right) = \frac{1}{2} \cdot m\left(\sphericalangle RPM\right)</math> și <math>m\left(\sphericalangle TPM\right) = 2 \cdot m\left(\sphericalangle TCM\right)</math>.'' | |||
# ''Arătați că'' <math>\frac{1}{2} \cdot m\left(\sphericalangle RPT\right) = m\left(\sphericalangle MRT\right) + m\left(\sphericalangle MTR\right)</math> | |||
# ''Determinați măsura unghiului'' <math>\sphericalangle ARM</math> | |||
# ''Arătați că'' <math> m\left(\sphericalangle MRT\right) + m\left(\sphericalangle MAT\right) = m\left(\sphericalangle DMC\right)</math> | |||
=== Supliment pentru Gazeta Matematică 9/2015 === | |||
'''[[S:E15.208]] (Angela Lopată)''' | |||
''Determinați toate numerele naturale consecutive care au suma <math>2015</math>.'' | |||
'''[[S:E15.239]] (Andrei Horvat-Marc)''' | |||
''Într-un triunghi dreptunghic se notează cu <math>b</math> și <math>c</math> lungimile catetelor, cu'' <math>a</math> ''lungimea ipotenuzei, cu <math>x</math> și <math>y</math> lungimile proiecțiilor catetelor pe ipotenuză, iar cu <math>h</math> lungimea înălțimii corespunzătoare ipotenuzei.'' | |||
a) ''Pentru <math>b=20</math> cm și <math>c=15</math> cm, calculați <math>a</math>, <math>x</math>, <math>y</math> și <math>h</math>.'' | |||
b) ''Arătați că există o infinitate de triunghiuri dreptunghice pentru care toate valorile <math>a</math>, <math>b</math>, <math>c</math>, <math>x</math>, <math>y</math> și <math>h</math> sunt numere naturale.'' | |||
'''[[S:L15.228]] (Iulian Bunu)''' | |||
''Fie șirul de numere reale'' <math> \left(a_n \right)_{n\ge 1}</math>, ''cu'' <math>a_1=5</math>, <math>a_2 = 7 </math>, <math>a_3 =10 </math> ''și'' <math>a_{n+1} = a_1+a_2+\ldots + a_{n-1} - a_n </math> p''entru orice'' <math>n>3</math> ''și'' <math> \left(b_n \right)_{n\ge 1}</math>, cu <math> b_n = \sum\limits_{k=1}^n a_k</math>. ''Calculați'' <math> \lim\limits_{n\to \infty} \dfrac{b_{2n}}{b_{2n+1}}</math> | |||
'''[[S:L15.231]] (Andrei Horvat-Marc)''' | |||
''Fie <math>\left(a_n\right)_{n\ge 1}</math> un șir crescător de numere reale strict pozitive cu <math>\lim\limits_{n\to \infty} a_n = a</math>. Arătați că <math display="block">\lim\limits_{n\to\infty} \dfrac{a-a_n}{\ln\frac{a}{a_n}} = a</math>'' | |||
'''[[S:L15.236]] (Gabriela Boroica)''' | |||
''Dacă funcțiile'' <math>f,g : \mathbb{R} \to \mathbb{R}</math> ''admit primitive, atunci funcția'' <math>u=\max\left\{ f,g \right\} - \left| f\right|</math> ''are primitive pe'' <math>\mathbb{R}</math>? |
Latest revision as of 08:33, 1 December 2024
Gazeta Matematică 1/2015
27020 (Gheorghe Szöllösy)
Să se calculeze suma
27022 (Guntter Gotha)
Fie o funcție cu proprietatea lui Darboux și cu . Mulțimea este finită și are un număr impar de elemente. Demonstrați că are un punct de extrem local ce aparține mulțimii .
27024 (Gheorghe Szöllösy)
Fie Să se calculeze
Gazeta Matematică 2/2015
27036 (Radu Pop)
Să se determine funcțiile derivabile cu proprietățile:
a) este funcție strict crescătoare;
b)
c) , oricare ar fi .
Gazeta Matematică 3/2015
Gazeta Matematică 9/2015
E:14892 (Radu Pop & Ienuțaș Vasile)
Fie triunghiul cu și punctele , , , . Punctul este situat în interiorul triunghiului astfel încât și , punctul astfel încât cu , iar și astfel încât și .
- Arătați că
- Determinați măsura unghiului
- Arătați că
Supliment pentru Gazeta Matematică 9/2015
S:E15.208 (Angela Lopată)
Determinați toate numerele naturale consecutive care au suma .
S:E15.239 (Andrei Horvat-Marc)
Într-un triunghi dreptunghic se notează cu și lungimile catetelor, cu lungimea ipotenuzei, cu și lungimile proiecțiilor catetelor pe ipotenuză, iar cu lungimea înălțimii corespunzătoare ipotenuzei.
a) Pentru cm și cm, calculați , , și .
b) Arătați că există o infinitate de triunghiuri dreptunghice pentru care toate valorile , , , , și sunt numere naturale.
S:L15.228 (Iulian Bunu)
Fie șirul de numere reale , cu , , și pentru orice și , cu . Calculați
S:L15.231 (Andrei Horvat-Marc)
Fie un șir crescător de numere reale strict pozitive cu . Arătați că
S:L15.236 (Gabriela Boroica)
Dacă funcțiile admit primitive, atunci funcția are primitive pe ?