Gazeta matematică 2012
Gazeta Matematică 3/2012
E:14310 (Traian Covaciu)
Fie trei numere naturale și suma lor.
a) Dați exemplu de cel puțin trei valori pentru astfel încât numerele să fie simultan numere prime.
b) Dacă sunt simultan numere prime, arătați că există astfel încât .
c) Dacă sunt numere prime, determinați restul împărțirii numărului la .
E:14312 (Iulian Bunu) Andrei are o anumită sumă de bani și se pregătește pentru două evenimente: Tabăra de Matematică și aniversarea Anei. Dacă ar câștiga premiul de 50 de lei și n-ar putea merge la aniversare, noua sumă ar fi cubul unui număr natural, iar dacă n-ar câștiga nimic, dar ar cheltui pentru cadou 50 de lei, noua sumă ar fi pătratul aceluiași număr natural. Ce sumă are Andrei?
E:14313 (Emil Florin Bizău și Ioan Bizău)
Determinați numerele întregi , și astfel încât .
Gazeta Matematică 4/2012
E:14331 (Cristina Vijdeluc și Mihai Vijdeluc)
Fie un număr natural. Arătați că numărul nu poate fi scris ca sumă a două numere prime.
E:14336 (Gheorghe Szöllösy)
Fie și două numere reale nenule, fixate. Determinați toate funcțiile cu proprietatea:
pentru orice și numere reale.
Gazeta Matematică 9/2012
E:14380 (Vasile Ienuțaș)
Determinați cifrele și știind că .
E:14383 (Gheorghe Gherasim)
Numerele naturale distincte , verifică .
i) Arătați că și nu sunt prime între ele.
ii) Arătați că diferența numerelor este cel puțin .
Se consideră că reprezintă cel mai mic multiplu comun al numerelor și , iar este cel mai mare divizor comun al numerelor și .