Gazeta matematică 2022: Difference between revisions
No edit summary |
No edit summary |
||
Line 73: | Line 73: | ||
'''[[28354]] (Florin Bojor)''' | '''[[28354]] (Florin Bojor)''' | ||
''Fie <math>O</math> punctul de intersecție a diagonalelor patrulaterului convex <math>ABCD</math> și punctele <math>E</math>, <math>F</math>, <math>G</math> și <math>H</math> situate pe segmentele <math>OA</math>, <math>OB</math>, <math>OC</math>, respectiv <math>OD</math>, astfel încât <math>AE = BF = CG = DH</math>. Notăm cu <math>I</math>, <math>J</math>, <math>K</math> și <math>L</math> mijloacele segmentelor <math>AB</math>, <math>BC</math>, <math>CD</math>, respectiv <math>DA</math> și cu <math>M</math>, <math>N</math>, <math>P</math> și <math>Q</math> mijloacele segmentelor <math>EF</math>, <math>FG</math>, <math>GH</math>, ''respectiv'' <math>HE</math>. | ''Fie <math>O</math> punctul de intersecție a diagonalelor patrulaterului convex <math>ABCD</math> și punctele <math>E</math>, <math>F</math>, <math>G</math> și <math>H</math> situate pe segmentele <math>OA</math>, <math>OB</math>, <math>OC</math>, respectiv <math>OD</math>, astfel încât <math>AE = BF = CG = DH</math>. Notăm cu <math>I</math>, <math>J</math>, <math>K</math> și <math>L</math> mijloacele segmentelor <math>AB</math>, <math>BC</math>, <math>CD</math>, respectiv <math>DA</math> și cu <math>M</math>, <math>N</math>, <math>P</math> și <math>Q</math> mijloacele segmentelor <math>EF</math>, <math>FG</math>, <math>GH</math>, ''respectiv'' <math>HE</math>. ''Arătați că:'' | ||
<ol type="a"><li> ''punctele <math>I</math>,<math>M</math> și <math>K</math> sunt coliniare dacă și numai dacă'' <math>AC=BD</math>.</li> | |||
<li> ''<math>AC \not= BD</math>, punctele de intersecție ale dreptelor <math>IM</math>, <math>NJ</math>, <math>PK</math> și <math>LQ</math> sunt vârfurile unui dreptunghi.''</li></ol>'' | |||
== Gazeta Matematică 10/2022 == | |||
'''[[28437]] (Nicolae Mușuroaia)''' | |||
'' | '' Fie șirul '' <math> (a_n)_{n \geq 1} </math> '' cu termenii strict pozitivi, dat de relația'' <math> a_{n+1}=\ln(a_1 + a_2 + ... + a_n), n \geq 1. </math>'' Determinați ''<math>\lim_{{n \to \infty}} \left(\frac{a_{n+1}}{a_n}-1\right) \cdot e^{a_n}. </math> | ||
Revision as of 19:24, 31 October 2024
Gazeta Matematică 1/2022
Clasa a XI-a
28247 (Florin Bojor)
Fie matricele care verifică simultan condițiile:
- matricea este nilpotentă și matricea este inversabilă.
Arătați că ecuația nu are soluții în .
Clasa a XII-a
28250 (Codruț-Sorin Zmicală)
Calculați
28251 (Gheorghe Boroica)
Fie un număr natural și o funcție continuă astfel încât și .
a) Dați un exemplu de o funcție cu proprietățile din enunț.
b) Arătați că există astfel încât .
Gazeta Matematică 2/2022
E:16203 (Dana Heuberger)
Fie triunghiul dreptunghic în , cu . Se consideră punctul astfel încât semidreapta este bisectoarea și . Fie punctul astfel încât se află pe segmentul și . Notăm cu simetricul lui față de . Arătați că
a)
b)
Clasa a IX-a
28260 (Dana Heuberger)
Fie triunghiul echilateral înscris în cercul de centru și rază . Considerăm mulțimea a punctelor din plan cu proprietatea că , unde . Arătați că oricare ar fi punctele distincte există astfel încât vectorii , și să formeze un triunghi echilateral.
Clasa a X-a
S:L22.58 (Vasile Giurgi)
Determinați pentru care ecuația
Gazeta Matematică 3/2022
S:L22.108. (Nicolae Mușuroia)
Fie cu , neinversabilă și , unde . Arătați că
Gazeta Matematică 4/2022
28315 (Vasile Pop și Nicolae Mușuroia)
Fie un poligon regulat și un punct în interiorul poligonului. Notăm cu , simetricele punctului față de laturile poligonului. Arătați că, pentru orice alegere a punctului , poligoanele au același centru de greutate.
Gazeta Matematică 5/2022
28338 (Nicolae Muşuroia)
Fie un punct în planul triunghiului iar simetricele punctului față de mijloacele laturilor respectiv .
a) Arătați că dreptele sunt concurente într-un punct .
b) Arătați că punctele sunt coliniare și că unde este centrul de greutate al triunghiului .
Gazeta Matematică 6-7-8/2022
28354 (Florin Bojor)
Fie punctul de intersecție a diagonalelor patrulaterului convex și punctele , , și situate pe segmentele , , , respectiv , astfel încât . Notăm cu , , și mijloacele segmentelor , , , respectiv și cu , , și mijloacele segmentelor , , , respectiv . Arătați că:
- punctele , și sunt coliniare dacă și numai dacă .
- , punctele de intersecție ale dreptelor , , și sunt vârfurile unui dreptunghi.
Gazeta Matematică 10/2022
28437 (Nicolae Mușuroaia)
Fie șirul cu termenii strict pozitivi, dat de relația Determinați