Gazeta matematică 2022: Difference between revisions

From Bitnami MediaWiki
No edit summary
Line 23: Line 23:
b) ''Arătați că există'' <math> c \in [0,1] </math> astfel încât <math> f(c) = c^{n^{3}-1}
b) ''Arătați că există'' <math> c \in [0,1] </math> astfel încât <math> f(c) = c^{n^{3}-1}
</math>.
</math>.
== Gazeta Matematică 2/2022 ==
'''[[E:16203]] (Dana Heuberger)'''
''Fie triunghiul'' <math>BCD</math> dreptunghic în <math>D</math>, cu <math>\sphericalangle CBD = 90^\circ</math>. ''Se consideră punctul'' <math>M</math> ''astfel încât semidreapta'' <math>CD</math> ''este bisectoarea'' <math>\sphericalangle BCM</math> ''și'' <math>MD \bot BC</math>''. Fie punctul'' <math>L</math> ''astfel încât'' <math>B</math> ''se află pe segmentul'' <math>ML</math> ''și'' <math>BM=2BL</math>.  ''Notăm cu'' <math>F</math> ''simetricul lui'' <math>D</math> ''față de'' <math>B</math>. ''Arătați că''
a) <math>MB=CF</math>
b) <math>\sphericalangle BDL = \sphericalangle BMD</math>
'''[[28260]] (Dana Heuberger)'''
''Fie triunghiul echilateral <math>ABC</math> înscris în cercul de centru <math>O</math> și rază <math>1</math>. Considerăm mulțimea <math>\mathcal{M}</math> a punctelor <math>X</math> din plan cu proprietatea că <math>\overrightarrow{OX} = k \cdot \overrightarrow{OA} + m \cdot \overrightarrow{OB} + n \cdot \overrightarrow{OC}</math>, unde <math>k, m, n \in N^*</math>. Arătați că oricare ar fi punctele distincte <math>M, N, P \in \mathcal{M} </math> există <math>Q\in\mathcal{M}</math> astfel încât vectorii <math>\overrightarrow{MN}</math>, <math>\overrightarrow{PQ} </math>  și <math>\overrightarrow{NM}+</math>  <math>\overrightarrow{QP}</math> să formeze un triunghi echilateral.''
'''[[S:L22.58]] (Vasile Giurgi)'''
''Determinați'' <math>a \in \mathbb{R}</math> ''pentru care ecuația''
<math display="block">\frac{x^{\lg x}}{10^a}+\lg^2 x = x + \lg x+a</math>''are o soluție unică în'' <math>\mathbb{R}</math>.


== Gazeta Matematică 3/2022 ==
== Gazeta Matematică 3/2022 ==

Revision as of 18:15, 30 October 2024

Gazeta Matematică 1/2022

28247 (Florin Bojor)

Fie matricele care verifică simultan condițiile:

  1. matricea este nilpotentă și matricea este inversabilă.
    Arătați că ecuația nu are soluții în .

28250 (Codruț-Sorin Zmicală)

Calculați

Soluție:

28251 (Gheorghe Boroica)

Fie un număr natural și o funcție continuă astfel încât și .
a) Dați un exemplu de o funcție cu proprietățile din enunț.
b) Arătați că există astfel încât .

Gazeta Matematică 2/2022

E:16203 (Dana Heuberger)

Fie triunghiul dreptunghic în , cu . Se consideră punctul astfel încât semidreapta este bisectoarea și . Fie punctul astfel încât se află pe segmentul și . Notăm cu simetricul lui față de . Arătați că

a)

b)

28260 (Dana Heuberger)

Fie triunghiul echilateral înscris în cercul de centru și rază . Considerăm mulțimea a punctelor din plan cu proprietatea că , unde . Arătați că oricare ar fi punctele distincte există astfel încât vectorii , și să formeze un triunghi echilateral.

S:L22.58 (Vasile Giurgi)

Determinați pentru care ecuația

are o soluție unică în .

Gazeta Matematică 3/2022

S:L22.108. (Nicolae Mușuroia)

Fie cu ,  neinversabilă și , unde . Arătați că

Gazeta Matematică 4/2022

28315 (Vasile Pop și Nicolae Mușuroia)

Fie un poligon regulat și un punct în interiorul poligonului. Notăm cu , simetricele punctului față de laturile poligonului. Arătați că, pentru orice alegere a punctului , poligoanele au același centru de greutate.