Gazeta matematică 2022: Difference between revisions

From Bitnami MediaWiki
No edit summary
No edit summary
Line 1: Line 1:
== Gazeta Matematică 1/2022 ==
== Gazeta Matematică 1/2022 ==


==== Clasa a XI-a ====
'''[[28247]] (Florin Bojor)'''
'''[[28247]] (Florin Bojor)'''


Line 9: Line 10:
</ol>
</ol>


==== Clasa a XII-a ====
'''[[28250]] (Codruț-Sorin Zmicală)'''
'''[[28250]] (Codruț-Sorin Zmicală)'''


''Calculați''
''Calculați''


''<math display="block">\lim_{n \to \infty}\sqrt[n]{\int_{0}^{1} (\sqrt{x}+x^n})^ndx.</math>'''''Soluție:'''
''<math display="block">\lim_{n \to \infty}\sqrt[n]{\int_{0}^{1} (\sqrt{x}+x^n})^ndx.</math>''


'''[[28251]]  (Gheorghe Boroica) '''
'''[[28251]]  (Gheorghe Boroica) '''
Line 34: Line 36:
b) <math>\sphericalangle BDL = \sphericalangle BMD</math>
b) <math>\sphericalangle BDL = \sphericalangle BMD</math>


==== Clasa a IX-a ====
'''[[28260]] (Dana Heuberger)'''
'''[[28260]] (Dana Heuberger)'''


''Fie triunghiul echilateral <math>ABC</math> înscris în cercul de centru <math>O</math> și rază <math>1</math>. Considerăm mulțimea <math>\mathcal{M}</math> a punctelor <math>X</math> din plan cu proprietatea că <math>\overrightarrow{OX} = k \cdot \overrightarrow{OA} + m \cdot \overrightarrow{OB} + n \cdot \overrightarrow{OC}</math>, unde <math>k, m, n \in N^*</math>. Arătați că oricare ar fi punctele distincte <math>M, N, P \in \mathcal{M} </math> există <math>Q\in\mathcal{M}</math> astfel încât vectorii <math>\overrightarrow{MN}</math>, <math>\overrightarrow{PQ} </math>  și <math>\overrightarrow{NM}+</math>  <math>\overrightarrow{QP}</math> să formeze un triunghi echilateral.''
''Fie triunghiul echilateral <math>ABC</math> înscris în cercul de centru <math>O</math> și rază <math>1</math>. Considerăm mulțimea <math>\mathcal{M}</math> a punctelor <math>X</math> din plan cu proprietatea că <math>\overrightarrow{OX} = k \cdot \overrightarrow{OA} + m \cdot \overrightarrow{OB} + n \cdot \overrightarrow{OC}</math>, unde <math>k, m, n \in N^*</math>. Arătați că oricare ar fi punctele distincte <math>M, N, P \in \mathcal{M} </math> există <math>Q\in\mathcal{M}</math> astfel încât vectorii <math>\overrightarrow{MN}</math>, <math>\overrightarrow{PQ} </math>  și <math>\overrightarrow{NM}+</math>  <math>\overrightarrow{QP}</math> să formeze un triunghi echilateral.''


==== Clasa a X-a ====
'''[[S:L22.58]] (Vasile Giurgi)'''
'''[[S:L22.58]] (Vasile Giurgi)'''



Revision as of 18:22, 30 October 2024

Gazeta Matematică 1/2022

Clasa a XI-a

28247 (Florin Bojor)

Fie matricele care verifică simultan condițiile:

  1. matricea este nilpotentă și matricea este inversabilă.
    Arătați că ecuația nu are soluții în .

Clasa a XII-a

28250 (Codruț-Sorin Zmicală)

Calculați

28251 (Gheorghe Boroica)

Fie un număr natural și o funcție continuă astfel încât și .
a) Dați un exemplu de o funcție cu proprietățile din enunț.
b) Arătați că există astfel încât .

Gazeta Matematică 2/2022

E:16203 (Dana Heuberger)

Fie triunghiul dreptunghic în , cu . Se consideră punctul astfel încât semidreapta este bisectoarea și . Fie punctul astfel încât se află pe segmentul și . Notăm cu simetricul lui față de . Arătați că

a)

b)

Clasa a IX-a

28260 (Dana Heuberger)

Fie triunghiul echilateral înscris în cercul de centru și rază . Considerăm mulțimea a punctelor din plan cu proprietatea că , unde . Arătați că oricare ar fi punctele distincte există astfel încât vectorii , și să formeze un triunghi echilateral.

Clasa a X-a

S:L22.58 (Vasile Giurgi)

Determinați pentru care ecuația

are o soluție unică în .

Gazeta Matematică 3/2022

S:L22.108. (Nicolae Mușuroia)

Fie cu ,  neinversabilă și , unde . Arătați că

Gazeta Matematică 4/2022

28315 (Vasile Pop și Nicolae Mușuroia)

Fie un poligon regulat și un punct în interiorul poligonului. Notăm cu , simetricele punctului față de laturile poligonului. Arătați că, pentru orice alegere a punctului , poligoanele au același centru de greutate.