Gazeta matematică 2012: Difference between revisions

From Bitnami MediaWiki
No edit summary
No edit summary
Line 11: Line 11:
c) ''Dacă <math> n, n + 2, n + 6 </math> sunt numere prime, determinați restul împărțirii numărului <math> S</math> la <math> 18 </math>.''<p>
c) ''Dacă <math> n, n + 2, n + 6 </math> sunt numere prime, determinați restul împărțirii numărului <math> S</math> la <math> 18 </math>.''<p>


'''[[E:14312]] (Iulian Bunu)'''<p>
'''[[E:14312]] (Iulian Bunu)'''


''Andrei are o anumită sumă de bani și se pregătește pentru două evenimente: Tabăra de Matematică și aniversarea Anei. Dacă ar câștiga premiul de 50 de lei și n-ar putea merge la aniversare, noua sumă ar fi cubul unui număr natural, iar dacă n-ar câștiga nimic, dar ar cheltui pentru cadou 50 de lei, noua sumă ar fi pătratul aceluiași număr natural. Ce sumă are Andrei? ''
''Andrei are o anumită sumă de bani și se pregătește pentru două evenimente: Tabăra de Matematică și aniversarea Anei. Dacă ar câștiga premiul de 50 de lei și n-ar putea merge la aniversare, noua sumă ar fi cubul unui număr natural, iar dacă n-ar câștiga nimic, dar ar cheltui pentru cadou 50 de lei, noua sumă ar fi pătratul aceluiași număr natural. Ce sumă are Andrei? ''
Line 18: Line 18:


''Determinați numerele întregi <math>x</math>, <math>y</math> și <math>z</math> astfel încât
''Determinați numerele întregi <math>x</math>, <math>y</math> și <math>z</math> astfel încât
<math>(2x + 3) / (3y - 1) = 2 / 3</math> și <math>5 / (4z - 3) = 3.</math>''
<math>\frac{2x + 3}{3} =  \frac{2}{3y - 1} = \frac{5}{4z - 3}</math>.''


== Gazeta Matematică 4/2012 ==
== Gazeta Matematică 4/2012 ==

Revision as of 08:11, 16 January 2025

Gazeta Matematică 3/2012

E:14310 (Traian Covaciu)

Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n, n + 2, n + 6 } trei numere naturale și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S } suma lor.

a) Dați exemplu de cel puțin trei valori pentru Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \in \mathbb{N}} astfel încât numerele Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n, n + 2, n + 6 } să fie simultan numere prime.

b) Dacă Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n, n + 2, n + 6 } sunt simultan numere prime, arătați că există Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k \in \mathbb{N} } astfel încât Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S = 9k + 5} .

c) Dacă Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n, n + 2, n + 6 } sunt numere prime, determinați restul împărțirii numărului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S} la Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 18 } .

E:14312 (Iulian Bunu) Andrei are o anumită sumă de bani și se pregătește pentru două evenimente: Tabăra de Matematică și aniversarea Anei. Dacă ar câștiga premiul de 50 de lei și n-ar putea merge la aniversare, noua sumă ar fi cubul unui număr natural, iar dacă n-ar câștiga nimic, dar ar cheltui pentru cadou 50 de lei, noua sumă ar fi pătratul aceluiași număr natural. Ce sumă are Andrei? E:14313 (Emil Florin Bizău și Ioan Bizău) Determinați numerele întregi Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z} astfel încât Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2x + 3}{3} = \frac{2}{3y - 1} = \frac{5}{4z - 3}} .

Gazeta Matematică 4/2012

E:14331 (Cristina Vijdeluc și Mihai Vijdeluc)

Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \ge2 } un număr natural. Arătați că numărul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n^4 + n^2 + 3 } nu poate fi scris ca sumă a două numere prime.

E:14336 (Gheorghe Szöllösy)

Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} două numere reale nenule, fixate. Determinați toate funcțiile Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f : \mathbb{R} \to \mathbb{R}} cu proprietatea: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) - f(y) = (ax + by)f(x)f(y),}
pentru orice Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle y} numere reale.

Gazeta Matematică 9/2012

E:14380 (Vasile Ienuțaș)

Determinați cifrele Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} știind că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \overline{ab}=(a+b)(a+b-1)} .

E:14383 (Gheorghe Gherasim)

Numerele naturale distincte , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} verifică Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9 \cdot [\,a, b]\,=a \cdot b \cdot (\,a \cdot b)\,} .

i) Arătați că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} nu sunt prime între ele.

ii) Arătați că diferența numerelor este cel puțin Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3} .

Se consideră că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [a,b]} reprezintă cel mai mic multiplu comun al numerelor Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} , iar Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a,b)} este cel mai mare divizor comun al numerelor Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} .