Gazeta matematică 2021: Difference between revisions
Line 34: | Line 34: | ||
'''[[28206]] (Dana Heuberger)''' | '''[[28206]] (Dana Heuberger)''' | ||
''Fie <math>\left(G,\cdot\right)</math> un grup cu elementul neutru <math>e</math> care conține subgrupurile proprii, distincte, finite <math>H_1</math>, <math>H_2</math> și <math>H_3</math>, astfel încât pentru orice permutare <math>\sigma \in S_3</math> și orice <math>a \in H_{\sigma\left(1\right)} \setminus \left\{e\right\}</math>, <math>b \in H_{\sigma\left(2\right)} \setminus \left\{e\right\}</math>, | ''Fie <math>\left(G,\cdot\right)</math> un grup cu elementul neutru <math>e</math> care conține subgrupurile proprii, distincte, finite <math>H_1</math>, <math>H_2</math> și <math>H_3</math>, astfel încât pentru orice permutare <math>\sigma \in S_3</math> și orice <math>a \in H_{\sigma\left(1\right)} \setminus \left\{e\right\}</math>, <math>b \in H_{\sigma\left(2\right)} \setminus \left\{e\right\}</math>, rezultă că <math>ab \in H_{\sigma\left(3\right)}</math>. | ||
'' | '' | ||
<ol type="a"><li> ''Arătați că subgrupurile <math>H_1</math>, <math>H_2</math> și <math>H_3</math> au același număr de elemente.''</li> | <ol type="a"><li> ''Arătați că subgrupurile <math>H_1</math>, <math>H_2</math> și <math>H_3</math> au același număr de elemente.''</li> |
Revision as of 09:23, 3 January 2025
Gazeta Matematică 6-7-8/2021
E:15990 (Cristina Vijdeluc și Mihai Vijdeluc)
Aflați numărul , știind că și , unde p și q sunt numere prime.
E:15991 (Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare )
Aflați numerele naturale și pentru care .
E:15992 (Cristina Vijdeluc și Mihai Vijdeluc)
Aflați numerele naturale și pentru care este adevărată relația .
Gazeta Matematică 10/2021
28163 (Dana Heuberger)
Aflați șirul de numere naturale nenule pentru care
Gazeta Matematică 11/2021
28203 (Dana Heuberger)
Fie o funcție cu proprietatea
, pentru orice
- Dați un exemplu de funcție cu proprietatea care nu este monotonă.
- Dați un exemplu de funcție cu proprietatea care nu este continuă.
- Fie o funcție care admite primitive și are proprietatea . Arătați că, dacă , pentru orice , atunci este surjectivă.
28206 (Dana Heuberger)
Fie un grup cu elementul neutru care conține subgrupurile proprii, distincte, finite , și , astfel încât pentru orice permutare și orice , , rezultă că .
- Arătați că subgrupurile , și au același număr de elemente.
- Dacă , arătați că grupul este de tip Klein.
Gazeta Matematică 12/2021
28208 (Dana Heuberger)
Considerăm pentagonul convex ABCDE înscris într-un cerc și ortocentrele triunghiurilor , , , , respectiv . Arătați că, dacă , , și , atunci și sunt pentagoane regulate.