|
|
| Line 67: |
Line 67: |
|
| |
|
| == Gazeta Matematică 6-7-8/2022 == | | == Gazeta Matematică 6-7-8/2022 == |
| | |
| | '''[[28354]] (Florin Bojor)''' |
| | |
| | ''Fie <math>O</math> punctul de intersecție a diagonalelor patrulaterului convex <math>ABCD</math> și punctele <math>E</math>, <math>F</math>, <math>G</math> și <math>H</math> situate pe segmentele <math>OA</math>, <math>OB</math>, <math>OC</math>, respectiv <math>OD</math>, astfel încât <math>AE = BF = CG = DH</math>. Notăm cu <math>I</math>, <math>J</math>, <math>K</math> și <math>L</math> mijloacele segmentelor <math>AB</math>, <math>BC</math>, <math>CD</math>, respectiv <math>DA</math> și cu <math>M</math>, <math>N</math>, <math>P</math> și <math>Q</math> mijloacele segmentelor <math>EF</math>, <math>FG</math>, |
| | <math>GH</math>, respectiv <math>HE</math>. Arătați că: |
| | <ol type="a"><li> punctele <math>I</math>,<math>M</math> și <math>K</math> sunt coliniare dacă și numai dacă <math>AC=BD</math>.</li> |
| | <li> <math>AC \not= BD</math>, punctele de intersecție ale dreptelor <math>IM</math>,<math>NJ</math>,<math>PK</math> și <math>LQ</math> sunt vârfurile unui dreptunghi.</li></ol>'' |
|
| |
|
| == Gazeta Matematică 10/2022 == | | == Gazeta Matematică 10/2022 == |
|
| |
|
| == Gazeta Matematică 11/2022 == | | == Gazeta Matematică 11/2022 == |
Gazeta Matematică 1/2022
28247 (Florin Bojor)
Fie matricele
care verifică simultan condițiile:

- matricea
este nilpotentă și matricea
este inversabilă.
Arătați că ecuația
nu are soluții în
.
28250 (Codruț-Sorin Zmicală)
Calculați
![{\displaystyle \lim _{n\to \infty }{\sqrt[{n}]{\int _{0}^{1}({\sqrt {x}}+x^{n}}})^{n}dx.}](https://wikimedia.org/api/rest_v1/media/math/render/svg/264403fdc5df3bf812dd0e32b134bcfd57d70fd8)
28251 (Gheorghe Boroica)
Fie
un număr natural și
o funcție continuă astfel încât
și
.
a) Dați un exemplu de o funcție
cu proprietățile din enunț.
b) Arătați că există
astfel încât
.
Gazeta Matematică 2/2022
E:16203 (Dana Heuberger)
Fie triunghiul
dreptunghic în
, cu
. Se consideră punctul
astfel încât semidreapta
este bisectoarea
și
. Fie punctul
astfel încât
se află pe segmentul
și
. Notăm cu
simetricul lui
față de
. Arătați că
a)
b)
28260 (Dana Heuberger)
Fie triunghiul echilateral
înscris în cercul de centru
și rază
. Considerăm mulțimea
a punctelor
din plan cu proprietatea că
, unde
. Arătați că oricare ar fi punctele distincte
există
astfel încât vectorii
,
și
să formeze un triunghi echilateral.
S:L22.58 (Vasile Giurgi)
Determinați
pentru care ecuația

are o soluție unică în 
.
Gazeta Matematică 3/2022
S:L22.108. (Nicolae Mușuroia)
Fie
cu
,
neinversabilă și
, unde
. Arătați că 
Gazeta Matematică 4/2022
28315 (Vasile Pop și Nicolae Mușuroia)
Fie
un poligon regulat și
un punct în interiorul poligonului. Notăm cu
,
simetricele punctului
față de laturile poligonului. Arătați că, pentru orice alegere a punctului
, poligoanele 
au același centru de greutate.
Gazeta Matematică 5/2022
28338 (Nicolae Muşuroia)
Fie
un punct în planul triunghiului
iar
simetricele punctului
față de mijloacele laturilor
respectiv
.
a) Arătați că dreptele
sunt concurente într-un punct
.
b) Arătați că punctele
sunt coliniare și că
unde
este centrul de greutate al triunghiului
.
Gazeta Matematică 6-7-8/2022
28354 (Florin Bojor)
Fie
punctul de intersecție a diagonalelor patrulaterului convex
și punctele
,
,
și
situate pe segmentele
,
,
, respectiv
, astfel încât
. Notăm cu
,
,
și
mijloacele segmentelor
,
,
, respectiv
și cu
,
,
și
mijloacele segmentelor
,
,
, respectiv
. Arătați că:
- punctele
,
și
sunt coliniare dacă și numai dacă
.
-
, punctele de intersecție ale dreptelor
,
,
și
sunt vârfurile unui dreptunghi.
Gazeta Matematică 10/2022
Gazeta Matematică 11/2022