Gazeta matematică 2015: Difference between revisions
| Line 15: | Line 15: | ||
== Gazeta Matematică 2/2015 == | == Gazeta Matematică 2/2015 == | ||
'''27036 (Radu Pop)''' | |||
''Să se determine funcțiile derivabile <math>f : \mathbb{R} \to \mathbb{R} | |||
</math>'' ''cu proprietățile:'' | |||
''a) <math>f' | |||
</math> este funcție strict crescătoare;'' | |||
''b) <math>f'(0) = 0; | |||
</math>'' | |||
''c) <math>f(yf'(x)) + f(x)f(y) = xy f'(x)f'(y) | |||
</math> , oricare ar fi'' <math>x,y \in \mathbb{R} | |||
</math>. | |||
== Gazeta Matematică 3/2015 == | == Gazeta Matematică 3/2015 == | ||
== Gazeta Matematică 9/2015 == | == Gazeta Matematică 9/2015 == | ||
Revision as of 08:24, 1 December 2024
Gazeta Matematică 1/2015
27020 (Gheorghe Szöllösy)
Să se calculeze suma Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{k=0}^{\left[\frac{n}{2}\right]} \frac{1}{4^k \cdot (k!)^2 (n-2k)!}, \quad n \geq 1. }
27022 (Guntter Gotha)
Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:\left[a,b\right] \to \mathbb{R}} o funcție cu proprietatea lui Darboux și cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left(a\right) \cdot f\left( b \right) >0} . Mulțimea Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M = \left\{ x \in \left[ a, b \right] \, | \, f\left(x\right) =0 \right\}} este finită și are un număr impar de elemente. Demonstrați că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} are un punct de extrem local ce aparține mulțimii Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} .
27024 (Gheorghe Szöllösy)
Fie Să se calculeze Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \to \infty}(I_0+I_1+I_2+\ldots+I_n).}
Gazeta Matematică 2/2015
27036 (Radu Pop)
Să se determine funcțiile derivabile Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f : \mathbb{R} \to \mathbb{R} } cu proprietățile:
a) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f' } este funcție strict crescătoare;
b) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f'(0) = 0; }
c) Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(yf'(x)) + f(x)f(y) = xy f'(x)f'(y) } , oricare ar fi Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x,y \in \mathbb{R} } .