|
|
| Line 34: |
Line 34: |
|
| |
|
| == Gazeta Matematică 9/2015 == | | == Gazeta Matematică 9/2015 == |
| | |
| | '''[[E:14892]] (Radu Pop & Ienuțaș Vasile)''' |
| | |
| | ''Fie triunghiul'' <math>ABC</math> ''cu'' <math>m\left(\sphericalangle C\right) > 30^\circ</math> ''și punctele'' <math>M</math>, <math>P</math>, <math>R</math>, <math>T</math>. ''Punctul'' <math>M</math> ''este situat în interiorul triunghiului'' <math>ABC</math> ''astfel încât'' <math>m\left(\sphericalangle BMA\right) = 120^\circ</math> ''și <math>m\left(\sphericalangle BCM\right) = 30^\circ</math>, punctul <math>P\in \left(MD\right.</math> astfel încât <math>\left[MP\right] \equiv \left[MB\right]</math> cu <math>AM \cap BC = \left\{D\right\}</math>, iar <math>R\in \left(AB\right)</math> și <math>T \in \left(AC\right)</math> astfel încât <math>m\left(\sphericalangle RBM\right) = \frac{1}{2} \cdot m\left(\sphericalangle RPM\right)</math> și <math>m\left(\sphericalangle TPM\right) = 2 \cdot m\left(\sphericalangle TCM\right)</math>.'' |
| | |
| | # ''Arătați că'' <math>\frac{1}{2} \cdot m\left(\sphericalangle RPT\right) = m\left(\sphericalangle MRT\right) + m\left(\sphericalangle MTR\right)</math> |
| | # ''Determinați măsura unghiului'' <math>\sphericalangle ARM</math> |
| | # ''Arătați că'' <math> m\left(\sphericalangle MRT\right) + m\left(\sphericalangle MAT\right) = m\left(\sphericalangle DMC\right)</math> |
Gazeta Matematică 1/2015
27020 (Gheorghe Szöllösy)
Să se calculeze suma
27022 (Guntter Gotha)
Fie
o funcție cu proprietatea lui Darboux și cu
. Mulțimea
este finită și are un număr impar de elemente. Demonstrați că
are un punct de extrem local ce aparține mulțimii
.
27024 (Gheorghe Szöllösy)
Fie
Să se calculeze
Gazeta Matematică 2/2015
27036 (Radu Pop)
Să se determine funcțiile derivabile
cu proprietățile:
a)
este funcție strict crescătoare;
b)
c)
, oricare ar fi
.
Gazeta Matematică 3/2015
Gazeta Matematică 9/2015
E:14892 (Radu Pop & Ienuțaș Vasile)
Fie triunghiul
cu
și punctele
,
,
,
. Punctul
este situat în interiorul triunghiului
astfel încât
și
, punctul
astfel încât
cu
, iar
și
astfel încât
și
.
- Arătați că

- Determinați măsura unghiului

- Arătați că
