3214 - Dinamica 04

From Bitnami MediaWiki

Definim un număr natural ca fiind bun dacă toate cifrele impare se află înaintea celor pare. De exemplu, numerele 13424, 400, 1357 sunt bune, pe când 34010 nu este.

Cerința

Dându-se un număr natural nenul n, să se determine câte numere bune de n cifre există. Pentru că acest număr poate fi foarte mare, se va determina răspunsul modulo 123457.

Date de intrare

Programul citește de la tastatură numărul n.

Date de ieșire

Programul va afișa pe ecran numărul de numere bune de n cifre, modulo 123457.

Restricții și precizări

Pentru 70% din punctaj, 1 ≤ n ≤ 100.000 Pentru 30% din punctaj, 100.001 ≤ n ≤ 1.000.000.000 ==Exemplu==: Intrare

3 Ieșire

475

Rezolvare

<syntaxhighlight lang="python3" line="1"> MOD = 123457

def numere_bune(n):

  # Inițializăm matricea dp cu 0-uri
  dp = [[0] * 2 for _ in range(n + 1)]
  # Pentru un singur caracter, avem 5 opțiuni (cifrele impare)
  dp[1][0] = 5
  dp[1][1] = 0
  # Calculăm numărul de numere bune pentru n caractere
  for i in range(2, n + 1):
      dp[i][0] = (dp[i - 1][0] * 5 + dp[i - 1][1] * 5) % MOD
      dp[i][1] = dp[i - 1][0]
  return (dp[n][0] + dp[n][1]) % MOD

if __name__ == "__main__":

  n = int(input("Introduceți n: "))
  
  rezultat = numere_bune(n)
  
  print(rezultat)

</syntaxhighlight>