1637 - Split
Enunț
Fie un şir a1,a2,…,an de numere naturale. Se împarte şirul în patru secvenţe astfel încât orice element din şir să aparţină unei singure secvenţe şi fiecare secvenţă să conţină cel puţin două elemente. Mai exact, se identifică trei indici i < j < k astfel încât prima secvenţă este formată din elementele a1,a2,…,ai, a doua din elementele ai+1,ai+2,…,aj, a treia din elementele aj+1,aj+2,…,ak şi ultima din elementele ak+1,ak+2,…,an. Pentru fiecare secvenţă se determină costul ei ca fiind diferenţa dintre valoarea maximă şi cea minimă din acea secvenţă.
Cerința
Să se determine o împărţire a şirului în patru secvenţe astfel încât suma costurilor celor patru secvenţe să fie maximă.
Date de intrare
Fișierul de intrare splitin.txt conţine pe prima linie numărul natural N. Pe linia a doua se găsesc N numere naturale, separate prin câte un spaţiu, reprezentând elementele şirului a.
Date de ieșire
Fișierul de ieșire splitout.txt conţine pe prima linie un singur număr natural reprezentând suma maximă a costurilor celor patru secvenţe. Pe linia a doua se află trei numere naturale i, j şi k, separate prin câte un spaţiu, cu semnificaţia din enunţ.
Restricții și precizări
- 8 ⩽ N ⩽ 5.000
- 0 ⩽ Ai ⩽ 100.000.000
- O secvenţă poate avea costul 0 (valoarea maximă egală cu valoarea minimă)
- Dacă există mai multe soluţii cu aceeaşi sumă maximă, atunci se va alege soluţia cu i minim. Dacă există mai multe soluții cu acelaşi i minim, se alege aceea cu j minim, iar dacă există mai multe soluții cu acelaşi i și j minim, se alege aceea cu k minim.
Exemplul 1
- Intrare
- splitin.txt
- 11
- 9 7 3 0 2 1 8 6 0 11 4
- Ieșire
- Datele de intrare corespund restricțiilor impuse
- splitout.txt
- 29
- 4 7 9
Explicație
Cele 4 secvențe sunt: 9 7 3 0 (cost 9 - 0 = 9)
2 1 8 (cost 8 - 1 = 7)
6 0 (cost 6 - 0 = 6)
11 4 (cost 11 - 4 = 7).
O altă soluţie care obţine tot suma maximă 29 este 5 7 9, dar nu are i minim.
Exemplul 2
- Intrare
- splitin.txt
- 5
- 9 7 3 0 2
- Ieșire
- Datele de intrare NU corespund restricțiilor impuse
Rezolvare
<syntaxhighlight lang="python" line>
- 1637 - Split
def validare_date(n, sir):
if not (8 <= n <= 5000): return False if len(sir) != n: return False for elem in sir: if not (0 <= elem <= 100000000): return False return True
def maximizeaza_suma(n, sir):
suma_maxima = float('-inf') rezultat = (0, 0, 0)
for i in range(1, n - 1): for j in range(i + 1, n): for k in range(j + 1, n + 1): secventa1 = sir[:i] secventa2 = sir[i:j] secventa3 = sir[j:k] secventa4 = sir[k:]
if not secventa1 or not secventa2 or not secventa3 or not secventa4: continue
cost1 = max(secventa1) - min(secventa1) cost2 = max(secventa2) - min(secventa2) cost3 = max(secventa3) - min(secventa3) cost4 = max(secventa4) - min(secventa4)
suma_curenta = cost1 + cost2 + cost3 + cost4
if suma_curenta > suma_maxima: suma_maxima = suma_curenta rezultat = (i, j, k)
return suma_maxima, rezultat
with open("splitin.txt", "r") as f:
n = int(f.readline().strip()) sir = list(map(int, f.readline().split()))
if validare_date(n, sir):
print("Datele de intrare corespund restricțiilor impuse") rezultat_suma, rezultat_secvente = maximizeaza_suma(n, sir) with open("splitout.txt", "w") as g: g.write(str(rezultat_suma) + "\n") g.write(" ".join(map(str, rezultat_secvente)))
else:
print("Datele de intrare NU corespund restricțiilor impuse") exit(0)
</syntaxhighlight>