27795

De la Universitas MediaWiki
Versiunea pentru tipărire nu mai este suportată și poate avea erori de randare. Vă rugăm să vă actualizați bookmarkurile browserului și să folosiți funcția implicită de tipărire a browserului.

27795 (Adrian Boroica și Florin Bojor)

Fie un număr natural care nu este multiplu de și un grup necomutativ de ordin . Să se demonstreze că există două automorfisme ale lui care au aceleași puncte fixe.

Soluție:

Pentru orice , funcția este un automorfism. Un element este punct fix al automorfismului dacă și numai dacă , echivalent cu sau, cu alte cuvinte, cu (centralizatorul lui a).

În particular, deoarece , pentru orice , automorfismele și au aceleași puncte fixe, deci este suficient să arătăm că există astfe încât .

Dacă , atunci, pentru orice avem , adică , ceea ce revine la . Cum pentru orice , iar , vom demonstra că există astfel încât . Să observăm că dacă ordinul al unui element este număr impar, atunci , deoarece, presupunând contrariul, din și , ar rezulta că , adică , contradicție. Așadar, este suficient să arătăm că conține cel puțin un element de ordin impar.

Dacă este număr impar, atunci orice element din , implicit și din , are ordin impar. Dacă este număr par, atunci, cu . Notând , se știe că . Elementele lui A au ordin impar și, cum este necomutativ, avem , deci eistă elemente de ordin impar care nu aparțin lui .