27795
S:27795 (Adrian Boroica și Florin Bojor)
Fie n un număr natural care nu este multiplu de 4 și G un grup necomutativ de ordin n. Să se demonstreze că există două automorfisme ale lui G care au aceleași puncte fixe.
Soluție:
Pentru orice a Є G, funcția Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_a : G \rightarrow G, f_a(x) = axa^{-1} } este un automorfism. Un element Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_0 \in G} este punct fix al automorfismului dacă și numai dacă , echivalent cu sau, cu alte cuvinte, cu (centralizatorul lui a).
În particular, deoarece , pentru orice , automorfismele și au aceleași puncte fixe, deci este suficient să arătăm că există astfe încât .
Dacă , atunci, pentru orice avem , adică , ceea ce revine la . Cum pentru orice , iar , vom demonstra că există astfel încât . Să observăm că dacă ordinul al unui element este număr impar, atunci , deoarece, presupunând contrariul, din și , ar rezulta că , adică , contradicție. Așadar, este suficient să arătăm că conține cel puțin un element de ordin impar.
Dacă este număr impar, atunci orice element din , implicit și din , are ordin impar. Dacă este număr par, atunciFailed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |G| =4n +2} , cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \in \N^*} . Notând Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A = \{x \in G | x^{2n+1} = e\}} , se știe că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |A| = 2n +1} . Elementele lui A au ordin impar și, cum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle G} este necomutativ, avem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |Z(G)| \leq \frac{1}{4} |G| < |A|} , deci eistă elemente de ordin impar care nu aparțin lui Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z(G)} .