27024 (Gheorghe Szöllösy)
Fie I n = ∫ 0 π cos n x 13 − 12 cos x d x , n ≥ 0. {\displaystyle I_{n}=\int _{0}^{\pi }{\frac {\cos nx}{13-12\cos x}}\,dx,n\geq 0.} Să se calculeze lim n → ∞ ( I 0 + I 1 + I 2 + … + I n ) . {\displaystyle \lim _{n\to \infty }(I_{0}+I_{1}+I_{2}+\ldots +I_{n}).}
Soluție. Să observăm că
I n + 2 + I n = ∫ 0 π 2 cos x − cos ( n 1 ) x 13 − 12 cos x d x = 1 6 ∫ 0 π ( 12 cos x − 13 + 13 ) cos ( n + 1 ) x 13 − 12 cos x d x == 1 6 ( n + 1 ) sin ( n + 1 ) x | 0 π + 13 6 I n + 1 , {\displaystyle I_{n+2}+I_{n}=\int _{0}^{\pi }{\frac {2\cos x-\cos(n_{1})x}{13-12\cos x}}\,dx={\frac {1}{6}}\int _{0}^{\pi }{\frac {(12\cos x-13+13)\cos(n+1)x}{13-12\cos x}}\,dx=={\frac {1}{6(n+1)}}\sin(n+1)x{\Biggr |}_{0}^{\pi }+{\frac {13}{6}}I_{n+1},} oricare ar fi n ∈ N . {\displaystyle n\in \mathbb {N} .} Atunci I n = α ( 2 3 ) n + β ( 3 2 ) n {\displaystyle I_{n}=\alpha \left({\frac {2}{3}}\right)^{n}+\beta \left({\frac {3}{2}}\right)^{n}} , unde α + β = I 0 = π 5 {\displaystyle \alpha +\beta =I_{0}={\frac {\pi }{5}}} și 2 3 α + 3 2 β = I 1 = 2 π 15 . {\displaystyle {\frac {2}{3}}\alpha +{\frac {3}{2}}\beta =I_{1}={\frac {2\pi }{15}}.} Obținem α = π 5 , β = 0 {\displaystyle \alpha ={\frac {\pi }{5}},\beta =0} și I n = π 5 ( 2 3 ) n {\displaystyle I_{n}={\frac {\pi }{5}}\left({\frac {2}{3}}\right)^{n}} .
În consecință, lim n → ∞ ( I 0 + I 1 + I 2 + … + I n ) = π 5 1 − 2 3 = 3 π 5 {\displaystyle \lim _{n\to \infty }(I_{0}+I_{1}+I_{2}+\ldots +I_{n})={\frac {\frac {\pi }{5}}{1-{\frac {2}{3}}}}={\frac {3\pi }{5}}} .