Gazeta Matematică 5/2024
Ciclul primar
P:1791 (Vraja-Lőkös Éva-Ibolya)
Suma a două numere naturale, pare, consecutive este
. Aflați produsul acestor numere.
P:1792 (Monica Dragoș)
Determinați numărul natural
pentru care
.
P:1793 (Ioana Roman)
Determinați cel mai mic număr de forma
pentru care are loc egalitatea
.
P:1794 (Florin Bojor)
Suma a trei numere este
. Aflați cele trei numere, știind că jumătatea primului număr, treimea celui de-al doilea și pătrimea celui de-al treilea număr sunt trei numere consecutive în ordine crescătoare.
P:1795 (Gheorghe Boroica)
Numărul
se scrie ca și produsul a
numere naturale. Determinați suma minimă a tuturor factorilor acestui produs.
P:1796 (Mariana Pop)
Un grup de elevi pornește în drumeție din orașul Târgu Lăpuș și ajunge după cinci ore pe Vârful Țibleș. Distanța de
de kilometri a fost parcursă de grupul de elevi cu bicicletele, mergând cu o viteză de
km/h, iar pe jos cu o viteză de
km/h. Aflați câți kilometri au fost parcurși cu bicicletele și câți kilometri au fost parcurși pe jos.
P:1797 (Simona Cosma)
Pentru cei
de elevi ai unei clase se confecționează ținuta școlară, constând din sarafan pentru fete și veste pentru băieți. Pentru
sarafane și
veste sunt necesari
m de stofă, iar pentru
sarafane și
veste sunt necesari
m de stofă. Aflați câți metri de stofă sunt necesari pentru confecționarea ținutei școlare pentru toți elevii clasei, știind că numărul fetelor este cu
mai mare decât cel al băieților.
Clasa a VI-a
E:16899 (Angela Lopată)
Fie
un triunghi pentru care lungimea proiecţiei laturii
pe dreapta
este mai mare decât lungimea segmentului
. Considerăm punctele
,
pe laturile
, respectiv
astfel încât
. Fie punctul
astfel încât
, punctele
și
sunt de aceeași parte a dreptei
, iar distanţa de la punctul
la dreapta
este aceeași cu distanţa de la punctul
la dreapta
. Arătaţi că
.
Clasa a VII-a
E:16901 (Călin Hossu)
Determinați numărul natural pentru care are loc egalitatea
.
E:16902 (Melania-Iulia Dobrican)
Fie numerele reale pozitive
,
, cu
. Arătaţi că
Clasa a VIII-a
E:16910 (Teodora Zetea & Bogdan Zetea)
Aflați soluțiile întregi ale ecuației
Clasa a X-a
28867 (Natalia Fărcaș)
Fie funcția injectivă
, cu proprietatea că există numerele reale
și
astfel încât
oricare ar fi
.
- Demonstrați că
.
- Dați un exemplu de șir
de funcții injective
, cu proprietatea că există
, astfel încât pentru orice
, avem 
și 
28868 (Andrei Horvat-Marc)
Fie
și funcțiile
,
și
,
.
Fie punctele
,
și mulțimea
a punctelor din plan cuprinse între graficele funcțiilor
și
și dreapta
. Aflați numărul punctelor din
care au ambele coordonate întregi.