28868

From Bitnami MediaWiki
Revision as of 07:52, 4 August 2025 by Andrei.Horvat (talk | contribs)

28868 (Andre Horvat-Marc)

Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\in \mathbb{N^\ast}} și funcțiile Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:\left[0,2n^2+3n\right] \to \left[1,2n+1\right]} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left(x\right) = \frac{\sqrt{8x+9}-1}{2}} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g:\left[1,2n+1\right] \to \left[0,2n^2+3n\right]} , .

Fie punctele , și mulțimea a punctelor din plan cuprinse între graficele funcțiilor și și dreapta . Aflați numărul punctelor din care au ambele coordonate întregi.

Soluție Cum , se obține că funcția este definită prin . Avem , și .

Au loc inegalitățile  oricare ar fi  și  oricare ar fi .
Considerăm că mulțimea  este mulțimea tuturor punctelor din plan cuprinse în interiorul triunghiului curbiliniu , deci este necesar să numărăm punctele laticeale din interiorul triunghiului curbiliniu , vom nota cu  acest număr.

Între segmentele și se situează și punctul , însă considerăm ca fiind mulțimea închisă delimitată de , și .

Fie punctele , , și \\ % numărul punctelor laticeale din interiorul și de pe frontiera triunghiului curbiliniu , respectiv Failed to parse (syntax error): {\displaystyle DAF<math>. Datorită simetriei triunghiurile curbilinii <math>DBE<math> și <math>DAF} conțin același număr de puncte laticeale.\\ numărul punctelor laticeale din interiorul și de pe frontiera triunghiului \\ numărul punctelor laticeale din interiorul și de pe frontiera pătratului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle DFCE} .

Avem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A_n = \left(2n^2+3n-1\right)^2} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T_n = \sum\limits_{k=1}^{2n^2+n} k = \dfrac{1}{2}n\left(2n+1\right)\left(2n^2+n+1\right) } și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_n = \sum\limits_{k=2}^{2n+1} \left(2n^2+3n+1-g\left(k\right)\right) = \dfrac{1}{3}n\left(2n+1\right)\left(4n+1\right).} Atunci Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_n = A_n - 2S_n -T_n+3} , în formula precedenă de adaugă Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3<math> pentru a corecta faptul că punctele <math>A} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B} , respectiv Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D} sunt puncte comune ale regiunilor Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ADF} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle BDE} , respectiv Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle CAB} . Se obține Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_n = \dfrac{1}{6}\left(12n^4+28n^3-3n^2-43n+24\right), \enskip n\in \mathbb{N}^\ast.} Cazuri particulare: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_1 = 3} este ușor de construit și verificat, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_2 = 57} este reprezentat în figura de mai sus, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_3 = 266 } și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_4 = 778} .