Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Bitnami MediaWiki
Search
Search
Log in
Personal tools
Log in
Contents
move to sidebar
hide
Beginning
1
Gazeta Matematică 6-7-8/2017
Toggle the table of contents
Gazeta matematică 2017
Page
Discussion
English
Read
View source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
View source
View history
General
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
From Bitnami MediaWiki
Revision as of 08:37, 1 December 2024 by
Andrei.Horvat
(
talk
|
contribs
)
(
→Gazeta Matematică 6-7-8/2017
)
(
diff
)
← Older revision
| Latest revision (diff) | Newer revision → (diff)
Gazeta Matematică 6-7-8/2017
27401
(Radu Pop)
Fie
n
∈
N
{\displaystyle n\in \mathbb {N} }
. Să se arate că
(
n
+
1
)
a
b
(
a
+
b
)
−
(
4
n
3
+
13
n
+
10
)
a
b
+
(
n
+
2
)
3
(
a
+
b
)
≥
(
n
+
2
)
3
,
{\displaystyle (n+1)ab(a+b)-(4n^{3}+13n+10)ab+(n+2)^{3}(a+b)\geq (n+2)^{3},}
oricare ar fi
a
,
b
∈
[
1
,
∞
)
{\displaystyle a,b\in [1,\infty )}
Toggle limited content width