|
|
Line 11: |
Line 11: |
| Fie <math>BD \cap CM = \left\{A\right\}</math>. Atunci triunghiul <math>ABC</math> este echilateral. Notăm <math>AB=a > 0</math>. Deoarece <math>CD</math> este înălțime a triunghiului echilateral <math>ABC</math>, rezultă că <math>CD</math> este și bisectoare a <math>\sphericalangle ACB</math>. | | Fie <math>BD \cap CM = \left\{A\right\}</math>. Atunci triunghiul <math>ABC</math> este echilateral. Notăm <math>AB=a > 0</math>. Deoarece <math>CD</math> este înălțime a triunghiului echilateral <math>ABC</math>, rezultă că <math>CD</math> este și bisectoare a <math>\sphericalangle ACB</math>. |
|
| |
|
| Fie <math>BC \cap DM = \left\{E\right\}</math>. Se arată ușor că <math>BE= \frac{a}{4}</math>, deci <math>EC= \frac{3a}{4}</math>. Din triunghiul dreptunghic <math>CEM</math> rezultă că <math>EC = \frac{MC}{2}</math>, așadar <math>CM= \frac{3a}{2}</math>. | | Fie <math>BC \cap DM = \left\{E\right\}</math>. Se arată ușor că <math>BE= \frac{a}{4}</math>, deci <math>EC= \frac{3a}{4}</math>. Din triunghiul dreptunghic <math>CEM</math> rezultă că <math>EC = \frac{MC}{2}</math>, așadar <math>CM= \frac{3a}{2}.</math> |
|
| |
|
| a) Avem <math>MA=MC-AC=\frac{a}{2}=BF</math>, <math>AB= BC =a</math> și <math>\sphericalangle MAB = \sphericalangle FBC = 120^\circ</math>, deci triunghiurile <math>ABM</math> și <math>BCF</math> sunt congruente, așadar <math>MB=CF</math>. | | a) Avem <math>MA=MC-AC=\frac{a}{2}=BF</math>, <math>AB= BC =a</math> și <math>\sphericalangle MAB = \sphericalangle FBC = 120^\circ</math>, deci triunghiurile <math>ABM</math> și <math>BCF</math> sunt congruente, așadar <math>MB=CF</math>. |
E:16203 (Dana Heuberger)
Fie triunghiul dreptunghic în , cu . Se consideră punctul astfel încât semidreapta este bisectoarea și . Fie punctul astfel încât se află pe segmentul și . Notăm cu simetricul lui față de . Arătați că
a)
b)
Soluție:
Fie . Atunci triunghiul este echilateral. Notăm . Deoarece este înălțime a triunghiului echilateral , rezultă că este și bisectoare a .
Fie . Se arată ușor că , deci . Din triunghiul dreptunghic rezultă că , așadar
a) Avem , și , deci triunghiurile și sunt congruente, așadar .
b) Triunghiurile și sunt congruente, de unde obținem că . Rezultă că .
Deoarece , iar , rezulră că triunghiurile și sunt asemenea, deci . Folosind secanta , deducem că ungiurile alterne interne și sunt congruente, așadar . Din rezultă că .
Cum și , rezultă că , așadar . Din rezultă că este un patrulater inscriptibil, deci . Deoarece , rezultă , deci .