Gazeta matematică 2022: Difference between revisions
| Line 8: | Line 8: | ||
<li><i>matricea <math>A</math> este nilpotentă și matricea <math>B</math> este inversabilă.<br>Arătați că ecuația <math>AX + XA = B</math> nu are soluții în <math>\mathcal{M}_3(\mathbb{C})</math>.</i></li> | <li><i>matricea <math>A</math> este nilpotentă și matricea <math>B</math> este inversabilă.<br>Arătați că ecuația <math>AX + XA = B</math> nu are soluții în <math>\mathcal{M}_3(\mathbb{C})</math>.</i></li> | ||
</ol> | </ol> | ||
'''[[28250]] (Codruț-Sorin Zmicală)</big>''' | |||
''Calculați'' | |||
''<math display="block">\lim_{n \to \infty}\sqrt[n]{\int_{0}^{1} (\sqrt{x}+x^n})^ndx.</math>'' | |||
== Gazeta Matematică 2/2022 == | == Gazeta Matematică 2/2022 == | ||
Revision as of 15:13, 30 November 2024
Gazeta Matematică 1/2022
28247 (Florin Bojor)
Fie matricele Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A, B \in \mathcal{M}_3(\mathbb{C}),} care verifică simultan condițiile:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AB = BA;}
- matricea Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A}
este nilpotentă și matricea Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B}
este inversabilă.
Arătați că ecuația Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AX + XA = B} nu are soluții în Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathcal{M}_3(\mathbb{C})} .
28250 (Codruț-Sorin Zmicală)
Calculați
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \to \infty}\sqrt[n]{\int_{0}^{1} (\sqrt{x}+x^n})^ndx.}
Gazeta Matematică 2/2022
Gazeta Matematică 3/2022
S:L22.108. (Nicolae Mușuroia)
Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A, B \in \mathcal{M}_3 \left( \mathbb{R}\right)} cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AB = BA} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^2+B^2} neinversabilă și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \det(A) = \alpha \cdot \det(B) \ne 0} , unde Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha \ne 1} . Arătați că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\det \left(A+B\right)}{\det \left(A+B\right)} = \frac{\det(A) + \det(B)}{\det(A)-\det(B)}. }
Gazeta Matematică 4/2022
28315 (Vasile Pop și Nicolae Mușuroia)
Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_1P_2\ldots P_n} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (n \geq 3)} un poligon regulat și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} un punct în interiorul poligonului. Notăm cu , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_2, \ldots, M_n} simetricele punctului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} față de laturile poligonului. Arătați că, pentru orice alegere a punctului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} , poligoanele Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_2 \ldots M_n} au același centru de greutate.