Gazeta matematică 2022: Difference between revisions
Line 21: | Line 21: | ||
'''[[28315]] (Vasile Pop și Nicolae Mușuroia)''' | '''[[28315]] (Vasile Pop și Nicolae Mușuroia)''' | ||
Fie <math>P_1P_2\ldots P_n</math> <math>(n \geq 3)</math> un poligon regulat și <math>M</math> un punct în interiorul poligonului. Notăm cu <math>M_1</math>, <math>M_2, \ldots, M_n</math> simetricele punctului <math>M</math> față de laturile poligonului. Arătați că, pentru orice alegere a punctului <math>M</math>, poligoanele <math>M_1</math><math>M_2 \ldots M_n</math> au același centru de greutate. | ''Fie'' <math>P_1P_2\ldots P_n</math> <math>(n \geq 3)</math> ''un poligon regulat și'' <math>M</math> ''un punct în interiorul poligonului. Notăm cu'' <math>M_1</math>, <math>M_2, \ldots, M_n</math> ''simetricele punctului <math>M</math> față de laturile poligonului. Arătați că, pentru orice alegere a punctului <math>M</math>, poligoanele <math>M_1</math><math>M_2 \ldots M_n</math> au același centru de greutate.'' | ||
== Gazeta Matematică 5/2022 == | == Gazeta Matematică 5/2022 == |
Revision as of 15:10, 30 November 2024
Gazeta Matematică 1/2022
28247 (Florin Bojor)
Fie matricele care verifică simultan condițiile:
- matricea este nilpotentă și matricea este inversabilă.
Arătați că ecuația nu are soluții în .
Gazeta Matematică 2/2022
Gazeta Matematică 3/2022
S:L22.108. (Nicolae Mușuroia)
Fie cu , neinversabilă și , unde . Arătați că
Gazeta Matematică 4/2022
28315 (Vasile Pop și Nicolae Mușuroia)
Fie un poligon regulat și un punct în interiorul poligonului. Notăm cu , simetricele punctului față de laturile poligonului. Arătați că, pentru orice alegere a punctului , poligoanele au același centru de greutate.