Gazeta matematică 2022: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
== Gazeta Matematică 1/2022 == | |||
== Gazeta Matematică 2/2022 == | |||
== Gazeta Matematică 3/2022 == | == Gazeta Matematică 3/2022 == | ||
| Line 11: | Line 15: | ||
Fie <math>P_1P_2\ldots P_n</math> <math>(n \geq 3)</math> un poligon regulat și <math>M</math> un punct în interiorul poligonului. Notăm cu <math>M_1</math>, <math>M_2, \ldots, M_n</math> simetricele punctului <math>M</math> față de laturile poligonului. Arătați că, pentru orice alegere a punctului <math>M</math>, poligoanele <math>M_1</math><math>M_2 \ldots M_n</math> au același centru de greutate. | Fie <math>P_1P_2\ldots P_n</math> <math>(n \geq 3)</math> un poligon regulat și <math>M</math> un punct în interiorul poligonului. Notăm cu <math>M_1</math>, <math>M_2, \ldots, M_n</math> simetricele punctului <math>M</math> față de laturile poligonului. Arătați că, pentru orice alegere a punctului <math>M</math>, poligoanele <math>M_1</math><math>M_2 \ldots M_n</math> au același centru de greutate. | ||
== Gazeta Matematică 5/2022 == | |||
== Gazeta Matematică 6-7-8/2022 == | |||
== Gazeta Matematică 10/2022 == | |||
== Gazeta Matematică 11/2022 == | |||
Revision as of 15:05, 30 November 2024
Gazeta Matematică 1/2022
Gazeta Matematică 2/2022
Gazeta Matematică 3/2022
S:L22.108. (Nicolae Mușuroia)
Fie cu , neinversabilă și , unde . Arătați că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\det \left(A+B\right)}{\det \left(A+B\right)} = \frac{\det(A) + \det(B)}{\det(A)-\det(B)}. }
Gazeta Matematică 4/2022
28315 (Vasile Pop și Nicolae Mușuroia)
Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle P_1P_2\ldots P_n} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (n \geq 3)} un poligon regulat și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} un punct în interiorul poligonului. Notăm cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_1} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_2, \ldots, M_n} simetricele punctului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} față de laturile poligonului. Arătați că, pentru orice alegere a punctului Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} , poligoanele Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_1} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M_2 \ldots M_n} au același centru de greutate.