E:14336: Difference between revisions
No edit summary |
No edit summary |
||
Line 7: | Line 7: | ||
'''Soluție.''' | '''Soluție.''' | ||
Presupunem că<math> f(0)=c\neq0.</math> Atunci, pentru <math>y = 0</math> relația din enunț devine <math display="block">f(x)-c=acxf(x).</math>Ultima relație nu poate fi adevărată pentru orice<math>x\in \mathbb{R}.</math> <br> | |||
Într-adevăr, pentru <math>x=\frac{1}{ac}</math> obținem <math>c=0</math>, în contradicție cu presupunerea făcută, <math>c\neq0.</math>. Rezultă așadar, că <math>f(0)=0.</math> De aici, luând <math>y=0</math> obținem <math>f(x)=0,</math> singura funcție care verifică relația dată. |
Revision as of 07:36, 16 January 2024
S:E14336 (Gh. Szöllösy)
Fie și două numere reale nenule, fixate. Determinați toate funcțiile cu proprietatea:
pentru orice și numere reale.
Soluție.
Presupunem că Atunci, pentru relația din enunț devine
Ultima relație nu poate fi adevărată pentru orice
Într-adevăr, pentru obținem , în contradicție cu presupunerea făcută, . Rezultă așadar, că De aici, luând obținem singura funcție care verifică relația dată.