Gazeta matematică 2012: Difference between revisions

From Bitnami MediaWiki
Line 5: Line 5:
''Fie ''<math> n \ge2 </math>'' un număr natural. Arătați că numărul ''<math> n^4 + n^2 + 3 </math> ''nu poate fi scris ca sumă a două numere prime.''
''Fie ''<math> n \ge2 </math>'' un număr natural. Arătați că numărul ''<math> n^4 + n^2 + 3 </math> ''nu poate fi scris ca sumă a două numere prime.''


'''E:14336 (Gh. Szöllösy)'''
'''[[E:14336]] (Gh. Szöllösy)'''


''Fie <math>a</math> și <math>b</math> două numere reale nenule, fixate. Determinați toate funcțiile'' <math>f : \mathbb{R} \to \mathbb{R}</math>'' cu proprietatea:'' <math display="block">f(x) - f(y) = (ax + by)f(x)f(y),</math>
''Fie <math>a</math> și <math>b</math> două numere reale nenule, fixate. Determinați toate funcțiile'' <math>f : \mathbb{R} \to \mathbb{R}</math>'' cu proprietatea:'' <math display="block">f(x) - f(y) = (ax + by)f(x)f(y),</math>
''pentru orice <math>x</math> și <math>y</math> numere reale.''
''pentru orice <math>x</math> și <math>y</math> numere reale.''

Revision as of 11:43, 2 November 2024

Gazeta Matematică 4/2012

Clasee a VII-a și a VIII-a

E:14331 (Cristina Vijdeluc și Mihai Vijdeluc)

Fie un număr natural. Arătați că numărul nu poate fi scris ca sumă a două numere prime.

E:14336 (Gh. Szöllösy)

Fie și două numere reale nenule, fixate. Determinați toate funcțiile cu proprietatea:

pentru orice și numere reale.