Gazeta matematică 2024: Difference between revisions
| Line 1: | Line 1: | ||
== Gazeta Matematică 5/2024 == | == Gazeta Matematică 5/2024 == | ||
=== Ciclul primar === | |||
'''[[P:1791]] (Vraja-Lőkös Éva-Ibolya)''' | '''[[P:1791]] (Vraja-Lőkös Éva-Ibolya)''' | ||
| Line 16: | Line 18: | ||
''Suma a trei numere este <math>182</math>. Aflați cele trei numere, știind că jumătatea primului număr, treimea celui de-al doilea și pătrimea celui de-al treilea număr sunt trei numere consecutive în ordine crescătoare.'' | ''Suma a trei numere este <math>182</math>. Aflați cele trei numere, știind că jumătatea primului număr, treimea celui de-al doilea și pătrimea celui de-al treilea număr sunt trei numere consecutive în ordine crescătoare.'' | ||
=== Clasa a VI-a === | |||
'''[[E:16899]] (Angela Lopată)''' | '''[[E:16899]] (Angela Lopată)''' | ||
''Fie <math>ABC</math> un triunghi pentru care lungimea proiecţiei laturii <math>AB</math> pe dreapta <math>BC</math> este mai mare decât lungimea segmentului <math>\left[AC\right]</math>. Considerăm punctele <math>M</math>, <math>N</math> pe laturile <math>\left(BC\right)</math>, respectiv <math>\left(AC\right)</math> astfel încât <math>BM = CN</math>. Fie punctul <math>P</math> astfel încât <math>NM = MP</math>, punctele <math>N</math> și <math>P</math> sunt de aceeași parte a dreptei <math>BC</math>, iar distanţa de la punctul <math>P</math> la dreapta <math>BC</math> este aceeași cu distanţa de la punctul <math>M</math> la dreapta <math>AC</math>. Arătaţi că <math>\sphericalangle NMP = \sphericalangle PBM = \sphericalangle MCA</math>.'' | ''Fie <math>ABC</math> un triunghi pentru care lungimea proiecţiei laturii <math>AB</math> pe dreapta <math>BC</math> este mai mare decât lungimea segmentului <math>\left[AC\right]</math>. Considerăm punctele <math>M</math>, <math>N</math> pe laturile <math>\left(BC\right)</math>, respectiv <math>\left(AC\right)</math> astfel încât <math>BM = CN</math>. Fie punctul <math>P</math> astfel încât <math>NM = MP</math>, punctele <math>N</math> și <math>P</math> sunt de aceeași parte a dreptei <math>BC</math>, iar distanţa de la punctul <math>P</math> la dreapta <math>BC</math> este aceeași cu distanţa de la punctul <math>M</math> la dreapta <math>AC</math>. Arătaţi că <math>\sphericalangle NMP = \sphericalangle PBM = \sphericalangle MCA</math>.'' | ||
=== Clasa a VII-a === | |||
'''[[E:16902]] (Melania-Iulia Dobrican)''' | '''[[E:16902]] (Melania-Iulia Dobrican)''' | ||
''Fie numerele reale pozitive <math>x</math>, <math>y</math>, cu <math>xy=4</math>. Arătaţi că <math>\frac{1}{x+4} + \frac{1}{y+4} \le \frac{1}{3}.</math>'' | ''Fie numerele reale pozitive <math>x</math>, <math>y</math>, cu <math>xy=4</math>. Arătaţi că <math>\frac{1}{x+4} + \frac{1}{y+4} \le \frac{1}{3}.</math>'' | ||
=== Clasa a X-a === | |||
'''[[28867]] (Natalia Fărcaș)''' | '''[[28867]] (Natalia Fărcaș)''' | ||
Revision as of 15:24, 20 August 2025
Gazeta Matematică 5/2024
Ciclul primar
P:1791 (Vraja-Lőkös Éva-Ibolya)
Suma a două numere naturale, pare, consecutive este . Aflați produsul acestor numere.
P:1792 (Monica Dragoș)
Determinați numărul natural pentru care .
P:1793 (Ioana Roman)
Determinați cel mai mic număr de forma pentru care are loc egalitatea .
P:1794 (Florin Bojor)
Suma a trei numere este . Aflați cele trei numere, știind că jumătatea primului număr, treimea celui de-al doilea și pătrimea celui de-al treilea număr sunt trei numere consecutive în ordine crescătoare.
Clasa a VI-a
E:16899 (Angela Lopată)
Fie un triunghi pentru care lungimea proiecţiei laturii pe dreapta este mai mare decât lungimea segmentului . Considerăm punctele , pe laturile , respectiv astfel încât . Fie punctul astfel încât , punctele și sunt de aceeași parte a dreptei , iar distanţa de la punctul la dreapta este aceeași cu distanţa de la punctul la dreapta . Arătaţi că .
Clasa a VII-a
E:16902 (Melania-Iulia Dobrican)
Fie numerele reale pozitive , , cu . Arătaţi că
Clasa a X-a
28867 (Natalia Fărcaș)
Fie funcția injectivă , cu proprietatea că există numerele reale și astfel încât oricare ar fi .
- Demonstrați că .
- Dați un exemplu de șir de funcții injective , cu proprietatea că există , astfel încât pentru orice , avem și
28868 (Andrei Horvat-Marc)
Fie și funcțiile , și , .
Fie punctele , și mulțimea a punctelor din plan cuprinse între graficele funcțiilor și și dreapta . Aflați numărul punctelor din care au ambele coordonate întregi.