Gazeta matematică 2024: Difference between revisions

From Bitnami MediaWiki
mNo edit summary
mNo edit summary
Line 9: Line 9:


# Demonstrați că <math>f\left(1-b\right)=1</math>.
# Demonstrați că <math>f\left(1-b\right)=1</math>.
# Dați un exemplu de șir <math> \left(f_n\right)_{n\ge 1}</math> de funcții injectivf <math>f_n:\mathbb{R} \to \mathbb{R}</math>, cu proprietatea că există <math>a,b \in \mathbb{R}</math>, astfel încât pentru orice <math>x\in \mathbb{R}</math>, avem  
# Dați un exemplu de șir <math> \left(f_n\right)_{n\ge 1}</math> de funcții injective <math>f_n:\mathbb{R} \to \mathbb{R}</math>, cu proprietatea că există <math>a,b \in \mathbb{R}</math>, astfel încât pentru orice <math>x\in \mathbb{R}</math>, avem <math display="block">f_n\left(x\right) \cdot f_n\left(1-x\right) = f_n\left(ax+b\right)</math>și <math display="block">\log_{n+1} f_n\left(x\right)  = a - \log_{n+1} f_n\left(-x\right).</math>
''
''



Revision as of 07:45, 5 August 2025

Gazeta Matematică 5/2024

P:1791 (Vraja-Lőkös Éva-Ibolya)

Suma a două numere naturale, pare, consecutive este . Aflați produsul acestor numere.

28867 (Natalia Fărcaș)

Fie funcția injectivă , cu proprietatea că există numerele reale și astfel încât oricare ar fi .

  1. Demonstrați că .
  2. Dați un exemplu de șir de funcții injective , cu proprietatea că există , astfel încât pentru orice , avem
    și


28868 (Andrei Horvat-Marc)

Fie și funcțiile , și , .

Fie punctele , și mulțimea a punctelor din plan cuprinse între graficele funcțiilor și și dreapta . Aflați numărul punctelor din care au ambele coordonate întregi.