Gazeta matematică 2024: Difference between revisions

From Bitnami MediaWiki
Line 3: Line 3:


''Suma a două  numere naturale, pare, consecutive este <math>90</math>. Aflați produsul acestor numere.''
''Suma a două  numere naturale, pare, consecutive este <math>90</math>. Aflați produsul acestor numere.''
'''[[28867]] (Natalia Fărcaș)'''
''Fie funcția injectivă <math>f:\mathbb{R} \to \mathbb{R}</math>, cu proprietatea că există numerele reale <math>a</math> și  <math>b</math> astfel încât <math>f\left(x\right) \cdot f\left(1-x\right) = f\left(ax+b\right)</math> oricare ar fi <math>x\in \mathbb{R}</math>.
a) Demonstrați că <math>f\left(1-b\right)=1</math>.
b) Dați un exemplu de șir <math> \left(f_n\right)_{n\ge 1}</math> de funcții injectivf <math>f_n:\mathbb{R} \to \mathbb{R}</math>, cu proprietatea că există <math>a,b \in \mathbb{R}</math>, astfel încât pentru orice <math>x\in \mathbb{R}</math>, avem
</math>f_n\left(x\right) \cdot f_n\left(1-x\right) = f_n\left(ax+b\right) \textnormal{ și } \log_{n+1} f_n\left(x\right)  = a - \log_{n+1} f_n\left(-x\right).</math>''


'''[[28868]] (Andrei Horvat-Marc)'''
'''[[28868]] (Andrei Horvat-Marc)'''

Revision as of 07:41, 5 August 2025

Gazeta Matematică 5/2024

P:1791 (Vraja-Lőkös Éva-Ibolya)

Suma a două numere naturale, pare, consecutive este Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 90} . Aflați produsul acestor numere.

28867 (Natalia Fărcaș)

Fie funcția injectivă Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:\mathbb{R} \to \mathbb{R}} , cu proprietatea că există numerele reale Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b} astfel încât Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left(x\right) \cdot f\left(1-x\right) = f\left(ax+b\right)} oricare ar fi Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\in \mathbb{R}} .

a) Demonstrați că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left(1-b\right)=1}
. 

b) Dați un exemplu de șir Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle  \left(f_n\right)_{n\ge 1}}
 de funcții injectivf Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_n:\mathbb{R} \to \mathbb{R}}
, cu proprietatea că există Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a,b \in \mathbb{R}}
, astfel încât pentru orice Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x\in \mathbb{R}}
, avem 

</math>f_n\left(x\right) \cdot f_n\left(1-x\right) = f_n\left(ax+b\right) \textnormal{ și } \log_{n+1} f_n\left(x\right) = a - \log_{n+1} f_n\left(-x\right).</math>


28868 (Andrei Horvat-Marc)

Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\in \mathbb{N^\ast}} și funcțiile Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:\left[0,2n^2+3n\right] \to \left[1,2n+1\right]} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f\left(x\right) = \frac{\sqrt{8x+9}-1}{2}} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g:\left[1,2n+1\right] \to \left[0,2n^2+3n\right]} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g\left(x\right) = f^{-1}\left(x\right)} .

Fie punctele Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A\left(2n^2+3n,2n+1\right)} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B\left(2n+1,2n^2+3n\right)} și mulțimea Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} a punctelor din plan cuprinse între graficele funcțiilor Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle g} și dreapta Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AB} . Aflați numărul punctelor din Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle M} care au ambele coordonate întregi.