Gazeta matematică 2022: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
== Gazeta Matematică 3/2022 == | == Gazeta Matematică 3/2022 == | ||
'''S:L22.108. (Nicolae Mușuroia)''' | '''[[S:L22.108]]. (Nicolae Mușuroia)''' | ||
''Fie <math>A, B \in \mathcal{M}_3 \left( \mathbb{R}\right)</math> cu <math>AB = BA</math>, <math>A^2+B^2</math> neinversabilă și <math>\det(A) = \alpha \cdot \det(B) \ne 0</math>, unde <math>\alpha \ne 1</math>. Arătați că <math display="block">\frac{\ | ''Fie <math>A, B \in \mathcal{M}_3 \left( \mathbb{R}\right)</math> cu <math>AB = BA</math>, <math>A^2+B^2</math> neinversabilă și <math>\det(A) = \alpha \cdot \det(B) \ne 0</math>, unde <math>\alpha \ne 1</math>. Arătați că <math display="block">\frac{\det \left(A+B\right)}{\det \left(A+B\right)} = \frac{\det(A) + \det(B)}{\det(A)-\det(B)}. </math>'' | ||
__FORTEAZACUPRINS__ | __FORTEAZACUPRINS__ | ||
Revision as of 08:06, 20 July 2024
Gazeta Matematică 3/2022
S:L22.108. (Nicolae Mușuroia)
Fie Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A, B \in \mathcal{M}_3 \left( \mathbb{R}\right)} cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle AB = BA} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^2+B^2} neinversabilă și , unde Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \alpha \ne 1} . Arătați că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\det \left(A+B\right)}{\det \left(A+B\right)} = \frac{\det(A) + \det(B)}{\det(A)-\det(B)}. }
__FORTEAZACUPRINS__