E:15694: Difference between revisions
No edit summary |
mNo edit summary |
||
Line 8: | Line 8: | ||
Înlocuind pe <math>(2)</math> în <math>(1)</math> avem <math>b \cdot c + c + b = 2020</math>, ceea ce conduce la <math>c(b + 1) + b + 1 = 2021</math>, de unde se obține<math display="block">(b + 1)(c + 1) = 2021.</math>Cum <math>2021 = 43 \cdot 47</math> putem avea <math>b + 1 = 43</math> şi <math>c + 1 = 47</math> sau <math>b + 1 = 47</math> şi <math>c + 1 = 43</math>. În primul caz <math>b = 42</math> şi <math>c = 46</math>, care nu convine (avem condiţia <math>c < b</math>). În al doilea caz <math>b = 46</math> şi <math>c = 42</math>. Obţinem <math>a = 1974</math>. | Înlocuind pe <math>(2)</math> în <math>(1)</math> avem <math>b \cdot c + c + b = 2020</math>, ceea ce conduce la <math>c(b + 1) + b + 1 = 2021</math>, de unde se obține<math display="block">(b + 1)(c + 1) = 2021.</math>Cum <math>2021 = 43 \cdot 47</math> putem avea <math>b + 1 = 43</math> şi <math>c + 1 = 47</math> sau <math>b + 1 = 47</math> şi <math>c + 1 = 43</math>. În primul caz <math>b = 42</math> şi <math>c = 46</math>, care nu convine (avem condiţia <math>c < b</math>). În al doilea caz <math>b = 46</math> şi <math>c = 42</math>. Obţinem <math>a = 1974</math>. | ||
Deci, numerele căutate sunt<math display="block">a=1974, b=46.</math> | Deci, numerele căutate sunt<math display="block">a=1974, b=46.</math> |
Revision as of 17:45, 17 July 2024
E:15694 (Traian Covaciu)
Suma a două numere naturale nenule este 2020. Dacă împărţim primul număr la al doilea, obţinem câtul egal cu restul. Aflaţi cele două numere.
Soluție.
Dacă şi sunt cele două numere, şi este câtul şi restul, atunci şi , cu .
Înlocuind pe în avem , ceea ce conduce la , de unde se obține
Cum putem avea şi sau şi . În primul caz şi , care nu convine (avem condiţia ). În al doilea caz şi . Obţinem .
Deci, numerele căutate sunt