E:16203: Diferență între versiuni

De la Universitas MediaWiki
Fără descriere a modificării
Fără descriere a modificării
Linia 9: Linia 9:
'''Soluție:'''
'''Soluție:'''


Fie <math>BD \cap CM = \left\{A\right\}</math>. Atunci triunghiul <math>ABC</math> este echilateral. Notăm <math>AB=a > 0</math>. Deoarece <math>CD</math> este înălțime a triunghiului echilateral  <math>ABC</math>, rezultă că <math>CD</math> este și bisectoare a <math>\sphericalangle ACB</math>. Se arată ușor că <math>BE= \frac{a}{4}</math>, deci <math>EC= \frac{3a}{4}</math>. Din triunghiul dreptunghic <math>CEM</math> rezultă că <math>EC = \frac{MC}{2}</math>, așadar <math>CM= \frac{3a}{2}</math>.
Fie <math>BD \cap CM = \left\{A\right\}</math>. Atunci triunghiul <math>ABC</math> este echilateral. Notăm <math>AB=a > 0</math>. Deoarece <math>CD</math> este înălțime a triunghiului echilateral  <math>ABC</math>, rezultă că <math>CD</math> este și bisectoare a <math>\sphericalangle ACB</math>.
 
Fie <math>BC \cap DM = \left\{E\right\}</math>. Se arată ușor că <math>BE= \frac{a}{4}</math>, deci <math>EC= \frac{3a}{4}</math>. Din triunghiul dreptunghic <math>CEM</math> rezultă că <math>EC = \frac{MC}{2}</math>, așadar <math>CM= \frac{3a}{2}</math>.
 
a) Avem <math>MA=MC-AC=\frac{a}{2}=BF</math>, <math>AB= BC =a</math> și

Versiunea de la data 29 februarie 2024 10:20

E:16203 (Dana Heuberger)

Fie triunghiul dreptunghic în , cu . Se consideră punctul astfel încât semidreapta este bisectoarea și . Fie punctul astfel încât se află pe segmentul și . Notăm cu simetricul lui față de . Arătați că

a)

b)

Soluție:

Fie . Atunci triunghiul este echilateral. Notăm . Deoarece este înălțime a triunghiului echilateral , rezultă că este și bisectoare a .

Fie . Se arată ușor că , deci . Din triunghiul dreptunghic rezultă că , așadar .

a) Avem , și