3357 - beta: Difference between revisions

From Bitnami MediaWiki
Flaviu (talk | contribs)
No edit summary
Flaviu (talk | contribs)
No edit summary
 
(5 intermediate revisions by 2 users not shown)
Line 10: Line 10:


== Date de ieșire ==  
== Date de ieșire ==  
Fișierul beta.out conține
Dacă datele sunt introduse corect, pe ecran se va afișa:  
Dacă datele sunt introduse corect, pe ecran se va afișa:  
'''"Datele sunt introduse corect."''', apoi pe un rând nou '''numărul c''', reprezentând valoarea cerută. În cazul contrar, se va afișa pe ecran: '''"Datele nu corespund restricțiilor impuse."'''.
'''"Datele sunt introduse corect."''', apoi ''' fișierul beta.out va conține valoarea cerută. Dacă șirul B are mai puțin de poz elemente se va scrie în fișier -1.''', reprezentând valoarea cerută. În cazul contrar, se va afișa pe ecran: '''"Datele nu corespund restricțiilor impuse."'''.


== Restricţii şi precizări ==
== Restricţii şi precizări ==
Line 19: Line 19:
* 1 ≤ poz ≤ 2.000.000.000
* 1 ≤ poz ≤ 2.000.000.000
* Pentru 55 de puncte avem n ≤ 100.000
* Pentru 55 de puncte avem n ≤ 100.000
== Exemplu ==
== Exemplu 1 ==
; Intrare
; Intrare
: beta.in
: 8 13
: 8 13
; Ieșire
; Ieșire
: Datele nu corespund restricțiilor impuse.
: Datele sunt introduse correct.
: Datele sunt introduse correct.
: beta.out
: 7
: 7
== Exemplu 2 ==
; Intrare
: beta.in
: 8 25
; Ieșire
: Datele nu corespund restricțiilor impuse.


== Rezolvare ==  
== Rezolvare ==  
Line 31: Line 42:
<syntaxhighlight lang="python" line>
<syntaxhighlight lang="python" line>
# 3357 - beta
# 3357 - beta
def construieste_sir(n):
def calc_b(n, k):
     sir = list(range(1, n + 1))
     b = list(range(1, n+1))
     i = 2
     p = n
     while i <= n:
     while p > 1:
         j = i // 2
         p //= 2
         k = i // 2 + i
         q = n // p
         inc = 1
         r = n % p
         while j < k:
         if r == 0:
             sir[j:k] = sir[k-1:j-1:-1][::inc]
             r = p
            j = k
            q -= 1
             k = k + i
        start = n - q*p + 1
             inc = -inc
        end = start + r - 1
        i *= 2
        if q % 2 == 1:
     return sir
             b.extend(reversed(range(start, end+1)))
        else:
             b.extend(range(start, end+1))
     return b


def validate_input(n, k):
    if not (1 <= n <= 10**5 and 1 <= k <= n):
        return False
    return True


def determina_element(n, pozitie):
if __name__ == '__main__':
    sir = construieste_sir(n)
    with open('beta.in', 'r') as f_in, open('beta.out', 'w') as f_out:
    return sir[pozitie - 1]
        n, k = map(int, f_in.readline().split())
        if not validate_input(n, k):
            f_out.write('-1\n')
            print('Datele nu corespund restricțiilor impuse.')
        else:
            b = calc_b(n, k)
            f_out.write(f'{b[k-1]}\n')




if __name__ == "__main__":
    n, pozitie = map(int, input().split())
    if n % 2 == 0 and n == 2 ** (n.bit_length() - 1) and 1 <= pozitie <= 2 * n:
        print("Datele sunt introduse corect.")
        element = determina_element(n, pozitie)
        print(element)
    else:
        print("Datele nu corespund restricțiilor impuse.")




Line 66: Line 82:
== Explicatie Rezolvare ==
== Explicatie Rezolvare ==


Funcția construieste_sir(n) construiește șirul B descris în enunț și îl returnează ca o listă. Algoritmul de construcție este relativ simplu: pornim cu lista A și pe baza acesteia construim B prin concatenarea la sfârșitul lui A a unor subsiruri ale lui A care sunt prelucrate într-un mod specific. Am implementat această prelucrare folosind două indici j și k care indică începutul și sfârșitul subsirului din A pe care îl prelucrăm și un contor inc care indică ordinea de parcurgere a subsirului.
Funcția `calc_b` primește două argumente: `n`, care este numărul dat, și `k`, care este poziția cerută în șirul `B`. Funcția începe prin construirea șirului `A`, care este un șir ordonat de la 1 la `n`. Apoi se împarte `n` la 2, apoi la 4, apoi la 8, și așa mai departe, până când nu se mai poate împărți. Se păstrează ultimele `n/p` elemente din șirul `A`, și acestea sunt adăugate la șirul `B` în ordinea cerută. Dacă `n` nu se divide exact la `p`, atunci se ia o bucată mai mică din șirul `A` și se adaugă la șirul `B` în ordinea cerută. Funcția se termină returnând șirul `B`.


Funcția determina_element(n, pozitie) determină elementul de pe poziția dată în șirul B pentru n dat. Ea folosește funcția construieste_sir(n) pentru a construi șirul și apoi returnează elementul corespunzător poziției date.
Funcția `validate_input` primește aceiași doi parametri ca și `calc_b` și verifică dacă aceștia îndeplinesc condițiile date în enunțul problemei. Dacă nu se îndeplinesc, returnează `False`, altfel returnează `True`.


În if __name__ == "__main__": citim datele de intrare și verificăm dacă sunt corecte, conform restricțiilor din enunț. Dacă da, calculăm elementul cerut și îl afișăm împreună cu mesajul "Datele sunt introduse corect.". Dacă nu, afișăm mesajul "Datele nu corespund restricțiilor impuse.".
Funcția `main` citește datele de intrare din fișierul `beta.in`, validează datele, calculează șirul `B` folosind funcția `calc_b`, și scrie în fișierul `beta.out` numărul de pe poziția `k` din șirul `B`. Dacă datele nu sunt valide, se scrie `-1` în fișierul `beta.out` și se afișează un mesaj de eroare.

Latest revision as of 21:03, 14 May 2023

Sursa: - beta


Cerinţa[edit | edit source]

Se dă un număr natural n despre care se cunoaște că este putere de 2. Considerăm inițial șirul numerelor naturale de la 1 la n așezate în ordine crescătoare. Notăm cu A acest șir. Pornind de la acesta, se construiește un nou șir (să îl notăm cu B) astfel: Primele n elemente ale lui B sunt chiar elementele șirului A în aceeași ordine. Următoarele n/2 elemente ale lui B sunt ultimele n/2 elemente ale lui A dar scrise în ordine inversă (descrescător). Următoarele n/4 elemente ale lui B sunt ultimele n/4 elemente ale lui A scrise în ordine crescătoare, următoarele n/8 elemente ale lui B sunt ultimele n/8 elemente ale lui A scrise în ordine descrescătoare, și tot așa, cu fiecare putere de 2 (notată p) ce apare la numitor, luăm ultimele n/p elemente din A și le adăugăm la finalul lui B alternând ordinea de parcurgere, de la o putere la alta conform modului descris mai sus. Se mai să un număr poz. Se cere determinarea numărului de pe poziția poz din șirul B.


Date de intrare[edit | edit source]

Fișierul beta.in conține pe prima linie numerele naturale n și poz separate printr-un spațiu.


Date de ieșire[edit | edit source]

Dacă datele sunt introduse corect, pe ecran se va afișa: "Datele sunt introduse corect.", apoi fișierul beta.out va conține valoarea cerută. Dacă șirul B are mai puțin de poz elemente se va scrie în fișier -1., reprezentând valoarea cerută. În cazul contrar, se va afișa pe ecran: "Datele nu corespund restricțiilor impuse.".

Restricţii şi precizări[edit | edit source]

  • 1 ≤ n ≤ 1.000.000.000
  • n se dă putere de 2
  • 1 ≤ poz ≤ 2.000.000.000
  • Pentru 55 de puncte avem n ≤ 100.000

Exemplu 1[edit | edit source]

Intrare
beta.in
8 13
Ieșire
Datele sunt introduse correct.
beta.out
7

Exemplu 2[edit | edit source]

Intrare
beta.in
8 25
Ieșire
Datele nu corespund restricțiilor impuse.



Rezolvare[edit | edit source]

Rezolvare ver. 1[edit | edit source]

<syntaxhighlight lang="python" line>

  1. 3357 - beta

def calc_b(n, k):

   b = list(range(1, n+1))
   p = n
   while p > 1:
       p //= 2
       q = n // p
       r = n % p
       if r == 0:
           r = p
           q -= 1
       start = n - q*p + 1
       end = start + r - 1
       if q % 2 == 1:
           b.extend(reversed(range(start, end+1)))
       else:
           b.extend(range(start, end+1))
   return b

def validate_input(n, k):

   if not (1 <= n <= 10**5 and 1 <= k <= n):
       return False
   return True

if __name__ == '__main__':

   with open('beta.in', 'r') as f_in, open('beta.out', 'w') as f_out:
       n, k = map(int, f_in.readline().split())
       if not validate_input(n, k):
           f_out.write('-1\n')
           print('Datele nu corespund restricțiilor impuse.')
       else:
           b = calc_b(n, k)
           f_out.write(f'{b[k-1]}\n')



</syntaxhighlight>

Explicatie Rezolvare[edit | edit source]

Funcția `calc_b` primește două argumente: `n`, care este numărul dat, și `k`, care este poziția cerută în șirul `B`. Funcția începe prin construirea șirului `A`, care este un șir ordonat de la 1 la `n`. Apoi se împarte `n` la 2, apoi la 4, apoi la 8, și așa mai departe, până când nu se mai poate împărți. Se păstrează ultimele `n/p` elemente din șirul `A`, și acestea sunt adăugate la șirul `B` în ordinea cerută. Dacă `n` nu se divide exact la `p`, atunci se ia o bucată mai mică din șirul `A` și se adaugă la șirul `B` în ordinea cerută. Funcția se termină returnând șirul `B`.

Funcția `validate_input` primește aceiași doi parametri ca și `calc_b` și verifică dacă aceștia îndeplinesc condițiile date în enunțul problemei. Dacă nu se îndeplinesc, returnează `False`, altfel returnează `True`.

Funcția `main` citește datele de intrare din fișierul `beta.in`, validează datele, calculează șirul `B` folosind funcția `calc_b`, și scrie în fișierul `beta.out` numărul de pe poziția `k` din șirul `B`. Dacă datele nu sunt valide, se scrie `-1` în fișierul `beta.out` și se afișează un mesaj de eroare.