Jump to content
Main menu
Main menu
move to sidebar
hide
Navigation
Main page
Recent changes
Random page
Help about MediaWiki
Bitnami MediaWiki
Search
Search
Create account
Log in
Personal tools
Create account
Log in
Pages for logged out editors
learn more
Contributions
Talk
Editing
Gazeta matematică 2022
Page
Discussion
English
Read
Edit
Edit source
View history
Tools
Tools
move to sidebar
hide
Actions
Read
Edit
Edit source
View history
General
What links here
Related changes
Special pages
Page information
Warning:
You are not logged in. Your IP address will be publicly visible if you make any edits. If you
log in
or
create an account
, your edits will be attributed to your username, along with other benefits.
Anti-spam check. Do
not
fill this in!
== Gazeta Matematică 1/2022 == ==== Clasa a XI-a ==== '''[[28247]] (Florin Bojor)''' ''Fie matricele <math>A, B \in \mathcal{M}_3(\mathbb{C}),</math> care verifică simultan condițiile: <ol style="list-style-type:lower-roman"> <li><i><math>AB = BA;</math></i></li> <li><i>matricea <math>A</math> este nilpotentă și matricea <math>B</math> este inversabilă.<br>Arătați că ecuația <math>AX + XA = B</math> nu are soluții în <math>\mathcal{M}_3(\mathbb{C})</math>.</i></li> </ol> ==== Clasa a XII-a ==== '''[[28250]] (Codruț-Sorin Zmicală)''' ''Calculați'' ''<math display="block">\lim_{n \to \infty}\sqrt[n]{\int_{0}^{1} (\sqrt{x}+x^n})^ndx.</math>'' '''[[28251]] (Gheorghe Boroica) ''' ''Fie'' <math>(n \geq 2)</math> ''un număr natural și'' <math> f: [0,1] \longrightarrow \mathbb{R} </math> ''o funcție continuă astfel încât'' <math>f(0) \geq 0</math> și <math>\int_{0}^{1} e^{2f(x)} dx = 1+\frac{2}{n^3}</math>. <br /> a) ''Dați un exemplu de o funcție <math>f</math> cu proprietățile din enunț''. <br /> b) ''Arătați că există'' <math> c \in [0,1] </math> astfel încât <math> f(c) = c^{n^{3}-1} </math>. == Gazeta Matematică 2/2022 == ==== Clasa a VII-a ==== '''[[E:16203]] (Dana Heuberger)''' ''Fie triunghiul'' <math>BCD</math> dreptunghic în <math>D</math>, cu <math>\sphericalangle CBD = 90^\circ</math>. ''Se consideră punctul'' <math>M</math> ''astfel încât semidreapta'' <math>CD</math> ''este bisectoarea'' <math>\sphericalangle BCM</math> ''și'' <math>MD \bot BC</math>''. Fie punctul'' <math>L</math> ''astfel încât'' <math>B</math> ''se află pe segmentul'' <math>ML</math> ''și'' <math>BM=2BL</math>. ''Notăm cu'' <math>F</math> ''simetricul lui'' <math>D</math> ''față de'' <math>B</math>. ''Arătați că'' a) <math>MB=CF</math> b) <math>\sphericalangle BDL = \sphericalangle BMD</math> ==== Clasa a IX-a ==== '''[[28260]] (Dana Heuberger)''' ''Fie triunghiul echilateral <math>ABC</math> înscris în cercul de centru <math>O</math> și rază <math>1</math>. Considerăm mulțimea <math>\mathcal{M}</math> a punctelor <math>X</math> din plan cu proprietatea că <math>\overrightarrow{OX} = k \cdot \overrightarrow{OA} + m \cdot \overrightarrow{OB} + n \cdot \overrightarrow{OC}</math>, unde <math>k, m, n \in N^*</math>. Arătați că oricare ar fi punctele distincte <math>M, N, P \in \mathcal{M} </math> există <math>Q\in\mathcal{M}</math> astfel încât vectorii <math>\overrightarrow{MN}</math>, <math>\overrightarrow{PQ} </math> și <math>\overrightarrow{NM}+</math> <math>\overrightarrow{QP}</math> să formeze un triunghi echilateral.'' ==== Clasa a X-a ==== '''[[S:L22.58]] (Vasile Giurgi)''' ''Determinați'' <math>a \in \mathbb{R}</math> ''pentru care ecuația'' <math display="block">\frac{x^{\lg x}}{10^a}+\lg^2 x = x + \lg x+a</math>''are o soluție unică în'' <math>\mathbb{R}</math>. == Gazeta Matematică 3/2022 == '''[[S:L22.108]]. (Nicolae Mușuroia)''' ''Fie <math>A, B \in \mathcal{M}_3 \left( \mathbb{R}\right)</math> cu <math>AB = BA</math>, <math>A^2+B^2</math> neinversabilă și <math>\det(A) = \alpha \cdot \det(B) \ne 0</math>, unde <math>\alpha \ne 1</math>. Arătați că <math display="block">\frac{\det \left(A+B\right)}{\det \left(A+B\right)} = \frac{\det(A) + \det(B)}{\det(A)-\det(B)}. </math>'' == Gazeta Matematică 4/2022 == ==== Clasa a X-a ==== '''[[28315]] (Vasile Pop și Nicolae Mușuroia)''' ''Fie'' <math>P_1P_2\ldots P_n</math> <math>(n \geq 3)</math> ''un poligon regulat și'' <math>M</math> ''un punct în interiorul poligonului. Notăm cu <math>M_1</math>, <math>M_2, \ldots, M_n</math> simetricele punctului <math>M</math> față de laturile poligonului. Arătați că, pentru orice alegere a punctului <math>M</math>, poligoanele <math>M_1</math><math>M_2 \ldots M_n</math> au același centru de greutate.'' == Gazeta Matematică 5/2022 == ==== Clasa a X-a ==== '''[[28338]] (Nicolae Muşuroia)''' ''Fie'' <math>M</math> ''un punct în planul triunghiului'' <math>ABC</math> ''iar'' <math>A_1, B_1, C_1</math> ''simetricele punctului <math>M</math> față de mijloacele laturilor'' <math>BC, AC,</math> ''respectiv'' <math>AB</math>''.'' ''a) Arătați că dreptele'' <math>AA_1, BB_1, CC_1</math> ''sunt concurente într-un punct'' <math>N</math>''.'' ''b) Arătați că punctele'' <math>M, G, N</math> ''sunt coliniare și că'' <math>\frac{MG}{GN}</math> <math>= 2,</math> ''unde'' <math>G</math> ''este centrul de greutate al triunghiului'' <math>ABC</math>''.'' == Gazeta Matematică 6-7-8/2022 == ==== Clasa a IX-a ==== '''[[28354]] (Florin Bojor)''' ''Fie <math>O</math> punctul de intersecție a diagonalelor patrulaterului convex <math>ABCD</math> și punctele <math>E</math>, <math>F</math>, <math>G</math> și <math>H</math> situate pe segmentele <math>OA</math>, <math>OB</math>, <math>OC</math>, respectiv <math>OD</math>, astfel încât <math>AE = BF = CG = DH</math>. Notăm cu <math>I</math>, <math>J</math>, <math>K</math> și <math>L</math> mijloacele segmentelor <math>AB</math>, <math>BC</math>, <math>CD</math>, respectiv <math>DA</math> și cu <math>M</math>, <math>N</math>, <math>P</math> și <math>Q</math> mijloacele segmentelor <math>EF</math>, <math>FG</math>, <math>GH</math>, ''respectiv'' <math>HE</math>. ''Arătați că:'' <ol type="a"><li> ''punctele <math>I</math>,<math>M</math> și <math>K</math> sunt coliniare dacă și numai dacă'' <math>AC=BD</math>.</li> <li> ''<math>AC \not= BD</math>, punctele de intersecție ale dreptelor <math>IM</math>, <math>NJ</math>, <math>PK</math> și <math>LQ</math> sunt vârfurile unui dreptunghi.''</li></ol>'' == Gazeta Matematică 10/2022 == ==== Clasa a V-a ==== '''[[E:16379]] (Cristina Vijdeluc, Salonic şi Mihai Vijdeluc, Baia Mare)''' ''Aflaţi numărul natural ''<math>\overline{ab}</math>'', cu cifre distincte, pentru care ''<math>(\overline{ab} - \overline{ba}) : (a - b) = \overline{bb} \cdot \overline{ba} - 2015.</math> '''[[E:16380]] (Cristina Vijdeluc, Salonic şi Mihai Vijdeluc, Baia Mare)''' ''Aflaţi numerele naturale ''<math>a,b,c,d</math>'' pentru care are loc relaţia ''<math>2(3^{a + 1} + 3^{b + 1} + 3^{c + 1}) = 3 \cdot 6 \cdot 9 \cdot \ldots \cdot d.</math> '''[[E:16382]] (Cristina Vijdeluc și Mihai Vijdeluc)''' ''Afișați numerele întregi pozitive <math>\overline{abcd}</math> cu proprietatea ''<math>a^7 + a^b + a^c + a^d = \overline{a000}.</math> ==== Clasa a XI-a ==== '''[[28437]] (Nicolae Mușuroaia)''' '' Fie șirul '' <math> (a_n)_{n \geq 1} </math> '' cu termenii strict pozitivi, dat de relația'' <math> a_{n+1}=\ln(a_1 + a_2 + ... + a_n), n \geq 1. </math>'' Determinați ''<math>\lim_{{n \to \infty}} \left(\frac{a_{n+1}}{a_n}-1\right) \cdot e^{a_n}. </math> == Gazeta Matematică 11/2022 == ==== Clasa a V-a ==== '''[[E:16407]] (Cristina Vijdeluc și Mihai Vijdeluc)''' ''Aflați cifrele nenule <math>a </math> și <math>b</math> pentru care <math>a + 10 \cdot (a + b)^{3} = \overline{baba}.</math>'' ==== Clasa a IX-a ==== '''[[28450]] (Nicolae Mușuroia)''' ''Fie <math>n \in </math> ℕ, <math>n \geq 4</math> și <math>p \in \{1, 2,..., [n/2]\}.</math> Considerăm mulțimile disjuncte <math>A = \{ a_{1}, a_{2},..., a_{n} \}</math> și <math>B = \{ b_{1}, b_{2},..., b_{n} \}</math>, formate din primii <math>n</math> termeni a două progresii aritmetice <math>(a_{k})_{k\geq1}</math> și <math>(b_{k})_{k\geq1}</math> cu rații opuse, nenule. Arătați că printre orice <math>n + p + 1</math> elemente distincte ale mulțimii <math>A \cup B</math> există două a căror sumă este egală cu <math>a_{2p} + b_p.</math>''
Summary:
Please note that all contributions to Bitnami MediaWiki may be edited, altered, or removed by other contributors. If you do not want your writing to be edited mercilessly, then do not submit it here.
You are also promising us that you wrote this yourself, or copied it from a public domain or similar free resource (see
Bitnami MediaWiki:Copyrights
for details).
Do not submit copyrighted work without permission!
Cancel
Editing help
(opens in new window)
Toggle limited content width