2015-12-1

From Bitnami MediaWiki

Enunț Fie o funcție crescătoare, derivabilă pe cu . Să se arate ca există cel puțin un punct , cu proprietatea că

.

Soluție [Robert Rogozsan]

Dacă , cum este crescătoare, vom avea că , deci

Atunci luăm arbitrar și concluzia este verificată. Analog, pentru (luăm din ).

În funcție de cum e față de , concluzia se verifică pentru (). Nu avem nevoie de faptul că e derivabilă, nici de .