14682

From Bitnami MediaWiki

E:14682 (Cristina Vijdeluc și Mihai Vijdeluc)

Enunț: Se consideră triunghiul ABC în care . Punctul M este situat pe segmentul (BC) astfel încât . Dacă , arătați că .


Soluție: Notăm și . Avem și , din ipoteză. Atunci de unde . Pe de altă parte avem ca unghi exterior . Cum AM = AC vom avea . Acum în avem , de unde , apoi și . Rezultă acum că triunghiul ABM este isoscel, de unde BM = AM, (1),iar este echilateral AM = AC = CM, (2). Din (1) și (2) rezultă BM = MC.