26713

From Bitnami MediaWiki
Revision as of 03:05, 8 January 2024 by Csula Beatrice (talk | contribs) (Pagină nouă: '''28354 (Radu Pop și Vasile Ienuțaș)''' <br /> ''<br />Se consideră șirul de numere reale <math>(x_n)_{n \geq 0}</math> și <math>(y_n)_{n \geq 0}</math> cu <math>x_n \geq 1</math>, <math>y_n \geq 1</math>, pentru orice <math>n \in \mathbb{N}</math>, și <math>\lim_{{n \to \infty}} (x_n^2 + y_n^2) = 2</math>. Să se calculeze <math>\lim_{{n \to \infty}} x_n</math> și <math>\lim_{{n \to \infty}} y_n</math>.'' <br /> '''Soluție:''' <br /> <br /> Avem <math> 2 \leq x_n...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

28354 (Radu Pop și Vasile Ienuțaș)

Se consideră șirul de numere reale Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (x_n)_{n \geq 0}} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (y_n)_{n \geq 0}} cu Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x_n \geq 1} , , pentru orice Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n \in \mathbb{N}} , și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} (x_n^2 + y_n^2) = 2} . Să se calculeze Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} x_n} și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} y_n} .

Soluție:

Avem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 \leq x_n - y_n \leq \sqrt{2(x_n^2 + y_n^2)} } și cum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} \sqrt{2(x_n^2 + y_n^2)} = 2 } , rezultă că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} (x_n + y_n) = 2 } . Cum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 1 \leq x_n \leq x_n + y_n - 1 } și Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} (x_n + y_n - 1) = 1 } , obținem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} x_n = 1 } . Analog, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} y_n = 1 } .