15698
E:15698 (Cristina Vijdeluc și Mihai Vijdeluc, Baia Mare)
Determinați numerele naturale , , pentru care
dacă suma pătratelor a două numere naturale este divizibilă cu , atunci fiecare număr este divizibil cu 3.
Această proprietate reiese din faptul că, dacă nu este divizibil cu , atunci .
Aici, deoarece este divizibil cu , iar și nu sunt divizibile cu , reiese că și . Dacă sau , atunci există a = 3a1 și b = 3b1, cu a1b1 ϵ ℕ, iar a1 < a sau b1 < b. Rezultă 9 2020a12 + 2021b12 = 2022c2, ceea ce implică c = 3c1, cu c1 ϵ ℕ. Relația devine 2020a12 + 2021b12 = 2022c12, ceea ce, ca mai sus, duce la a1 = 3a2, b1 = 3b2, c1 = 3c2, cu a2, b2, c2 ϵ ℕ, iar a2 < a1 sau b2 < b1. Repetând raționamentul obținem un șir nesfârșit de numere naturale a > a1 > a2 > . . . sau un șir nesfârșit de numere naturale b > b1 > b2 > . . . - imposibil. Astfel, presupunerea a ≠ 0 sau b ≠ 0 este falsă.
Rămâne soluția a = b = c = 0.
Observație. Ideea folosită în rezolvarea de mai sus pentru a arăta că a = b= 0 reprezintă metoda coborârii infinite.