28338

From Bitnami MediaWiki
Revision as of 21:28, 17 November 2023 by Pop Georgiana (talk | contribs)

28338 (Nicolae Muşuroia)

Fie un punct în planul triunghiului iar simetricele punctului față de mijloacele laturilor respectiv .

a) Arătați că dreptele sunt concurente într-un punct .

b) Arătați că punctele sunt coliniare și că unde este centrul de greutate al triunghiului .

Soluție:

a) Patrulaterele și sunt paralelograme, prin urmare diagonalele lor au același mijloc. Rezultă .

b) Notăm afixele punctelor din problemă cu literele mici corespunzătoare. Cum și sunt paralelograme, rezultă

.

În plus cum este mijlocul lui rezultă că .

Punctul este centrul de greutate al triunghiului deci .

Se verifică imediat că deci punctele și sunt coliniare și .