28437

From Bitnami MediaWiki
Revision as of 14:31, 11 November 2023 by Andrei.Horvat (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

28437 (Nicolae Mușuroaia)

Fie șirul cu termenii strict pozitivi, dat de relația Determinați

Soluție:
Pentru orice avem , deci . Rezultă că pentru orice are loc

Deoarece pentru orice Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {n \geq 2}} deducem că șirul este strict crescător.
Dacă șirul este mărginit superior, atunci este convergent cu Trecând la limită în relația (1), obținem de unde , absurd! Prin urmare, șirul este crescător și nemărginit superior, deci .
Atunci
deoarece din rezultă că