28437

From Bitnami MediaWiki
Revision as of 14:18, 11 November 2023 by Andrei.Horvat (talk | contribs)

28437 (Nicolae Mușuroaia)

Fie șirul cu termenii strict pozitivi, dat de relația Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{n+1}=\ln(a_1 + a_2 + ... + a_n), n \geq 1. } Determinați Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} \left(\frac{a_{n+1}}{a_n}-1\right) \cdot e^{a_n}. }

Soluție:
Pentru orice Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle {n \geq 2} } avem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n = \ln(a_1 + a_2 + ... + a_{n-1}) } , deci Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_n = a_1 + a_2 + ... + a_{n-1} = e^{a_n}} . Rezultă că pentru orice are loc


Deoarece pentru orice deducem că șirul este strict crescător.
Dacă șirul este mărginit superior, atunci este convergent cu Trecând la limită în relația (1), obținem de unde , absurd! Prin urmare, șirul este crescător și nemărginit superior, deci .
Atunci deoarece din rezultă că