28437
28437 (Nicolae Mușuroaia)
Fie șirul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (a_n)_{n \geq 1} }
cu termenii strict pozitivi, dat de relația Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a_{n+1}=\ln(a_1 + a_2 + ... + a_n), n \geq 1. }
Determinați Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} (\frac{a_{n+1}}{a_n}-1) \cdot e^{a_n}. }
Soluție:
Pentru orice avem , deci . Rezultă că pentru orice are loc
Deoarece pentru orice deducem că șirul este strict crescător.
Dacă șirul este mărginit superior, atunci este convergent cu Trecând la limită în relația (1), obținem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = \ln(e^{a_n} + a)} de unde Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a = 0 } , absurd! Prin urmare, șirul Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ((a_n)_{n \geq 1}} este crescător și nemărginit superior, deci Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} a_n =\infty} .
Atunci Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} \left(\frac{a_{n+1}}{a_n}-1\right) \cdot e^{a_n} = \lim_{{n \to \infty}} \frac{\ln(e^{a_n} + a_n) - \ln(e^{a_n})}{a_n} \cdot e^{a_n} = \lim_{{n \to \infty}} \frac{\ln\left(1+\frac{a_n}{e^{a_n}}\right)}{\frac{a_n}{e^{a_n}}} = 1} deoarece din Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} a_n =\infty } rezultă că Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}} \frac{a_n}{e^{a_n}}=0}