28437

From Bitnami MediaWiki
Revision as of 19:20, 8 November 2023 by Pop Antonio Ionuț (talk | contribs)

28437 (Nicolae Mușuroaia)

Fie șirul cu termenii strict pozitivi, dat de relația Determinați

Soluție:
Pentru orice avem , deci . Rezultă că pentru orice are loc


Deoarece pentru orice deducem că șirul este strict crescător.
Dacă șirul este mărginit superior, atunci este convergent cu Trecând la limită în relația (1), obținem de unde , absurd! Prin urmare, șirul este crescător și nemărginit superior, deci .
Atunci Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{{n \to \infty}}(\frac{a_{n+1}}{a_n}-1) \cdot e^{a_n}=\lim_{{n \to \infty}}\frac{ln(e^{a_n} + a_n)-ln(e^{a_n})}{a_n}\cdot e^{a_n} = \lim_{{n \to \infty}}\frac{ln(1+\frac{a_n}{e^{a_n})}{\frac{a_n}{e^{a_n}}=1} deoarece din