28250

From Bitnami MediaWiki
Revision as of 14:07, 28 October 2023 by Ghetie Gabriela Claudia (talk | contribs) (Pagină nouă: <sub>'''<big>28250 (Codruț-Sorin Zmicală)</big>'''</sub> ''Calculați'' ''<math>\lim_{n \to \infty}\sqrt[n]{\int_{0}^{1} (\sqrt{x}+x^n})^ndx</math>.'' '''Soluție:''' Fie <math>a_n=\int_{0}^{1} (\sqrt{x}+x^n)^ndx</math>, n<math>\in\Nu^*</math>. Cu binomul lui Newton avem <math>(\sqrt{x}+x^n)^n=\sum_{k=0}^n\binom{n}{k}x^\tfrac{(2n-1)k+n}{2}</math>, iar prin integrare pe [0,1] obținem <math>a_n=\sum_{k=0}^n\binom{n}{k}\cdot\frac{2}{(2n-1)k+n+2}</math>. Pentru orice <ma...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

28250 (Codruț-Sorin Zmicală)

Calculați

.

Soluție:

Fie , n. Cu binomul lui Newton avem , iar prin integrare pe [0,1] obținem .

Pentru orice Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k\in\{0,1,...,n\}} avem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \binom{n}{k}\cdot\frac{1}{n^2+1}\leqslant\binom{n}{k}\cdot\frac{2}{(2n-1)k+n+2}\leqslant\binom{n}{k}} , iar prin însumarea acestor inegalități obținem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2^n}{n^2+1}\leqslant a_n\leqslant 2^n} .

Rezultă Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{2}{\sqrt[n]{n^2+1}}\leqslant{\sqrt[n]{a_n}}\leqslant2} , pentru orice Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\geqslant2} . Cum Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \to \infty}\sqrt[n]{n^2+1}=1} , din teorema cleștelui obținem Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{n \to \infty}\sqrt[n]{a_n}=2} .