28450

From Bitnami MediaWiki
Revision as of 11:46, 27 October 2023 by Adina Timiș (talk | contribs) (Pagină nouă: '''28450 (Nicolae Mușuroia)''' Fie <math>n \in </math> ℕ, <math>n \geq 4</math> și <math>p \in \{1, 2,..., [n/2]\}.</math> Considerăm mulțimile disjuncte <math>A = \{ a_{1}, a_{2},..., a_{n} \}</math> și <math>B = \{ b_{1}, b_{2},..., b_{n} \}</math>, formate din primii <math>n</math> termeni a două progresii aritmetice <math>(a_{k})_{k\geq1}</math> și <math>(b_{k})_{k\geq1}</math> cu rații opuse, nenule. Arătați că printre orice <math>n + p + 1</math> elemente...)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

28450 (Nicolae Mușuroia)

Fie ℕ, și Considerăm mulțimile disjuncte și , formate din primii termeni a două progresii aritmetice și cu rații opuse, nenule. Arătați că printre orice elemente distincte ale mulțimii există două a căror sumă este egală cu

Soluție:

Fie rația primei progresii. Observăm că (1)

Presupunem că putem alege , elemente distincte ale lui , astfel încât suma a oricăror două dintre acestea să fie diferită de Din (1) deducem că printre aceste elemente trebuie să se afle cel mult câte un element din fiecare dintre mulțimile . Cum , rezultă că printre cele numere alese se află cel puțin două care aparțin aceleiași dintre mulțimile precedente, contradicție.