27020 (Gheorghe Szöllösy)
Să se calculeze suma ∑ k = 0 ⌊ n 2 ⌋ 1 4 k ⋅ ( k ! ) 2 ⋅ ( n − 2 k ) ! , n ≥ 1 {\displaystyle \sum _{k=0}^{\left\lfloor {\frac {n}{2}}\right\rfloor }{\frac {1}{4^{k}\cdot (k!)^{2}\cdot (n-2k)!}},\quad n\geq 1}
Soluție:
Fie a n {\displaystyle a_{n}} coeficientul lui X n {\displaystyle X^{n}} din rezolvarea lui P ( X ) = ( X + ⌊ 1 2 ⌋ ) 2 n = ( X ( 1 + X ) + ⌊ 1 4 ⌋ ) n = ∑ k = 0 n ( n k ) X ( n − k ) ( 1 4 k ) {\displaystyle P(X)=\left(X+\left\lfloor {\frac {1}{2}}\right\rfloor \right)^{2n}=\left(X(1+X)+\left\lfloor {\frac {1}{4}}\right\rfloor \right)^{n}=\sum _{k=0}^{n}{\binom {n}{k}}X^{(n-k)}\left({\frac {1}{4^{k}}}\right)} .